
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 10, OCTOBER 2024 8983

Sleep When Everything Looks Fine: Self-Triggered
Monitoring for Signal Temporal Logic Tasks

Chuwei Wang , Xinyi Yu, Jianing Zhao , Lars Lindemann , Member, IEEE, and Xiang Yin , Member, IEEE

Abstract—Online monitoring is a widely used technique in as-
sessing if the performance of the system satisfies some desired
requirements during run-time operation. Existing works on online
monitoring usually assume that the monitor can acquire system
information periodically at each time instant, which may be un-
necessarily energy-consuming. In this paper, we proposed a novel
self-triggered mechanism for model-based online monitoring of
discrete-time dynamical system under specifications described by
signal temporal logic (STL) formulae. Specifically, instead of sam-
pling the system state at each time instant, a self-triggered monitor
can actively determine when the next system state is sampled in
addition to its monitoring decision regarding the satisfaction of
the task. We propose an effective algorithm for synthesizing such
a self-triggered monitor that can correctly evaluate a given STL
formula on-the-fly while maximizing the time interval between two
observations. We show that, compared with the standard online
monitor with periodic information, the proposed self-triggered
monitor can significantly reduce observation burden while ensur-
ing that no information of the STL formula is lost. Case studies are
provided to illustrate the proposed monitoring mechanism.

Index Terms—Task planning, discrete event dynamic auto-
mation systems, planning, scheduling and coordination.

I. INTRODUCTION

AUTONOMOUS systems, such as teams of ground robots
or unmanned aerial vehicles, have found widespread appli-

cations in diverse areas, ranging from search and rescue missions
to smart warehouses. The critical nature of these systems lies in
their safety implications: any failure to accomplish their desig-
nated tasks could result in catastrophic consequences. However,
these systems are inherently susceptible to errors due to their
intricate logics and complex dynamics. Therefore, monitoring
the safety status of the system stands out as a central task during
their operations [1], [2]. In particular, one should halt the system
and initiate corrective actions once a failure is detected.

To express the formal requirements of autonomous systems,
temporal logic, including linear temporal logic (LTL) or signal

Received 11 June 2024; accepted 12 August 2024. Date of publication 6
September 2024; date of current version 16 September 2024. This article was
recommended for publication by Associate Editor J.-H. Lee and Editor C.-B.
Yan upon evaluation of the reviewers’ comments. This work was supported by
the National Natural Science Foundation of China under Grant 62173226, Grant
62061136004, and Grant 61833012. (Corresponding author: Xiang Yin.)

Chuwei Wang, Jianing Zhao, and Xiang Yin are with the Department of
Automation and Key Laboratory of System Control and Information Pro-
cessing, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
wangchuwei@sjtu.edu.cn; jnzhao@sjtu.edu.cn; yinxiang@sjtu.edu.cn).

Xinyi Yu and Lars Lindemann are with the Thomas Lord Department of
Computer Science, University of Southern California, Los Angeles, CA 90089
USA (e-mail: xinyi.yu12@usc.edu; llindema@usc.edu).

Digital Object Identifier 10.1109/LRA.2024.3455848

temporal logic (STL), stands out as one of the most widely
employed tools. This is because it offers a rich and structured
framework for describing high-level tasks. Particularly, STL
provides an effective tool for the quantitative evaluation of
real-value signals in real-time settings [3], [4]. Since the seminal
work of Maler [5], STL has undergone extensive developments
and applications in the analysis and control of numerous safety-
critical systems [6], [7], [8], [9].

Online monitoring is a widely adopted lightweight technique
for evaluating the correctness of the system in real-time [10],
[11], [12]. In contrast to model checking, which necessitates
offline enumeration of all possible behaviors, online monitoring
involves a monitor that observes the partial signals generated up
to the current instant. It can be broadly categorized into model-
free and model-based, depending on the knowledge utilized by
the monitor. Specifically, in model-free online monitoring [11],
[12], correctness evaluation relies solely on the partial signal,
neglecting the model information of dynamic systems. More
recently, there has been a surge of interest in model-based online
monitoring [13], [14], [15], [16], [17], [18]. This approach,
leveraging the dynamic information of the system, enables the
monitor to make more precise evaluations regarding the satis-
faction of the task.

Concerning the implementation of online monitoring, a fun-
damental question is how online information is obtained by the
monitor. However, this crucial aspect has been neglected by
existing works, as they implicitly presuppose that the monitor
has complete access to the partial signal (state sequence) gener-
ated by the system. This assumption implies that the monitor
can acquire system information periodically by, e.g., consis-
tently activating sensors at each time instant. Nevertheless, in
numerous applications, such a periodic information acquisition
mechanism may prove to be unnecessary. Consistently activating
sensors can be either energy-consuming or potentially prone to
information leakage. This scenario is also applicable in various
daily settings. For instance, a factory manager typically exercises
greater caution when a machine approaches the safety boundary,
and conversely, adopts a more relaxed stance when there are no
hazardous surroundings within their field of view.

Motivated by the preceding discussion, this paper introduces
a novel self-triggered mechanism for online monitoring of
discrete-time dynamical systems under STL specifications. We
adopt a model-based setting, assuming that the monitor pos-
sesses the dynamic model of the system. However, rather than
sampling the system state periodically at each time instant, a
self-triggered monitor can actively determine when to sample the

2377-3766 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on October 13,2024 at 21:13:45 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0004-3161-7043
https://orcid.org/0000-0002-1579-0522
https://orcid.org/0000-0003-3430-6625
https://orcid.org/0000-0003-1944-1570
mailto:wangchuwei@sjtu.edu.cn
mailto:jnzhao@sjtu.edu.cn
mailto:yinxiang@sjtu.edu.cn
mailto:xinyi.yu12@usc.edu
mailto:llindema@usc.edu

8984 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 10, OCTOBER 2024

next system state, alongside making monitoring decisions about
the feasibility of the STL task. As a result, the information acqui-
sition module remains silent when critical information about the
task status is not required. Based on the assumption that the envi-
ronment map is static, we present an algorithm for synthesizing
such a self-triggered monitor capable of on-the-fly evaluation
of a given STL formula. Specifically, the self-triggered monitor
aims to maximize the time interval between two observations
while ensuring the successful evaluation of the STL task.

Finally, we note that the concept of self-triggered mechanisms
has found widespread applications in the literature, aiming
to conserve sensor energy [19], reduce communication band-
width [20], or enhance information security [21]. In [22], the
authors applied event-triggered mechanism to control synthesis
of STL tasks. However, to our knowledge, the utilization of
self-triggered information acquisition mechanisms for the pur-
pose of online monitoring of complex logic tasks has not been
explored in the literature. In [23], model information is used
to mitigate the issue of sampling uncertainties in monitoring.
However, it considers an offline monitoring setting. Here we
use model information for the purpose of predictions rather than
interpolations. In the context of predictive online monitoring
under partial observation, state estimation processes as well as
reachability analysis are also involved [24], [25], [26]. However,
no event-triggered mechanism is considered therein.

II. PRELIMINARIES

A. System Model

We consider a discrete-time dynamic system of form

xt+1 = f(xt, ut), (1)

where xt ∈ X ⊆ Rn and ut ∈ U ⊆ Rm are the system state
and the input at time t, respectively, and f : X × U → X is
the dynamic function. We assume that the initial state is fixed as
x0 ∈ X . Given a sequence of inputs u0:T−1 = u0u1 · · ·uT−1 ∈
UT , the resulting trajectory of the system is the state se-
quence ξ(x0,u0:T−1) = x1:T = x1 · · ·xT such that xi+1 =
f(xi, ui), i = 0, . . . , T − 1. Note that our approach treats con-
trol inputs from the system user and additional disturbances in
the same manner mathematically.

B. Signal Temporal Logic

The specifications of the system are described by STL formu-
lae with bounded-time [5], whose syntax is as follows

ψ ::= � | πμ | ¬ψ | ψ1 ∧ ψ2 | ψ1U[a,b]ψ2,

where� is the true predicate, πμ is a predicate whose truth value
is determined by the sign of function μ : Rn → R, i.e., πμ is
true iff μ(x) > 0. Notations ¬ and ∧ are the standard Boolean
operators “negation” and “conjunction”, respectively, which can
further induce “disjunction” by ψ1 ∨ ψ2 := ¬(¬ψ1 ∧ ¬ψ2) and
“implication” by ψ1 → ψ2 := ¬ψ1 ∨ ψ2. Notation U[a,b] is the
temporal operator “until”, where a, b ∈ R≥0 are two time in-
stants. One can also induce temporal operators “eventually” and
“always” by F[a,b]ψ := �U[a,b]ψ and G[a,b] := ¬F[a,b]¬ψ, re-
spectively.

Given a sequence x, we use notation (x, t0) |= ψ to denote
the satisfaction for STL formulae ψ at time t0. The semantics of
STL are inductively defined as follows:

(x, t) |= πμ iff μ(x(t)) > 0
(x, t) |= ¬ψ iff ¬((x, t) |= ψ)
(x, t) |= ψ1 ∧ ψ2 iff (x, t) |= ψ1 ∧ (x, t) |= ψ2

(x, t) |= ψ1U[a,b]ψ2 iff ∃t′ ∈ [t+ a, t+ b] : (x, t′) |= ψ2

and ∀t′′ ∈ [t, t′] : (x, t′′) |= ψ1

We write x |= ψ whenever (x, 0) |= ψ. The readers are re-
ferred to [5] for more details on the semantics of STL.

In the original semantics of U[a,b], formula ψ1 needs to be
satisfied within interval [0, a]. For the sake of convenience, we
use new “until” operator U′ by slightly modifying the semantics
as: (x, t) |= ψ1U

′
[a,b]ψ2 iff

[∃t′ ∈ [t+ a, t+ b] : (x, t′) |= ψ2] ∧ [∀t′′

∈ [t+ a, t′] : (x, t′′) |= ψ1]

Note that, we can express the original until operator U as
ψ1U[a,b]ψ2 = G[0,a]ψ1 ∧ ψ1U

′
[a,b]ψ2. Hereafter in the paper,

we will use this modified version of until operator, and rewrite
it directly as ψ1U[a,b]ψ2 by omitting the superscript.

Finally, for predicateπμ, its satisfaction region isHμ := {x ∈
X | μ(x) ≥ 0} with H¬ϕ = X \ Hϕ and Hϕ1∧ϕ2 = Hϕ1 ∩
Hϕ2 . Therefore, for any Boolean formula ϕ, we can express
its requirement equivalently by x ∈ Hϕ.

C. Fragment of STL Formulae

In this work, we consider a fragment of STL formulae such
that the overall task is expressed as the conjunction of N
sub-formulae without nested temporal operators. Formally, we
consider an STL formula of form:

Φ =
∧

i=1,...,N

Φi, (2)

where each Φi is either

(i) G[ai,bi]x ∈ Hi or (ii) x ∈ H1
iU[ai,bi]x ∈ H2

i .

Let I = {1, . . . , N} be the index set of sub-formulae. We
assume that the indices are ordered based on the beginning
instant of each sub-formulae, i.e., a1 ≤ · · · ≤ aN . For each
time instant t, we denote by It = {i | ai ≤ t ≤ bi} ⊆ I the
index set of formulae that are effective at time t. Similarly, we
define the index sets of sub-formulae effective before and after t
by I<t = {i | t > bi} and I>t = {i | t < ai}, respectively. For
each sub-formulae i ∈ I, we denote byOi ∈ {G,U} the unique
temporal operator in Φi. We define IU

t = {i ∈ It | Oi = U};
the same for IG

t .

D. Remaining Formulae and Feasible Sets

As the system evolves, some sub-formulae may be satisfied
or not effective anymore. Throughout the paper, we will use
notation I ⊆ I to denote the index set for those sub-formulae re-
maining unsatisfied. If I ∩ I<t = ∅, we define the I-remaining

Authorized licensed use limited to: University of Southern California. Downloaded on October 13,2024 at 21:13:45 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: SLEEP WHEN EVERYTHING LOOKS FINE: SELF-TRIGGERED MONITORING FOR SIGNAL TEMPORAL LOGIC TASKS 8985

Fig. 1. Motivating example of robot charging mission.

formula at instant t in the form of

Φ̂I
t =

∧
i∈I∩It

Φ
[t,bi]
i ∧

∧
i∈I>t

Φi, (3)

where Φ
[t,bi]
i is attained from Φ

[ai,bi]
i by replacing the start-

ing instant of the temporal operator from ai to t. Then the
I-remaining feasible set at instant t, denoted by XI

t , is defined
as the set of states from which the system can possibly satisfy
the I-remaining formula, i.e.,

XI
t =

{
xt ∈ X

∣∣∣∣ ∃ ut:T−1 ∈ UT−t

s.t. xtξf (xt,ut:T−1) |= Φ̂I
t

}
. (4)

Otherwise, if I ∩ I<t �= ∅, it means that there are some sub-
formulae that should have been satisfied. In this scenario, we
define XI

t = ∅ since the overall task is already failed.
Remark 1: Although the STL fragment does not support

arbitrary nested temporal operators, it is still more general than
the standard reach-avoid task. In particular, it can capture multi-
ple reach-avoid specifications without a predefined reachability
order. Many recent works also focus on this fragment; see,
e.g., [27], [28].

III. MODEL-BASED ONLINE MONITORING

A. Standard Online Monitor With Periodic Sampling

In the context of online monitoring, the system state is ob-
served by a monitor that determines the satisfaction of the STL
task dynamically online based on the trajectory generated by the
system. Specifically, given an STL formula Φ with time horizon
T and a (partial) signal x0:t = x0x1 . . . xt (also called prefix)
up to time instant t < T , we say x0:t is
� violated if x0:tξ(xt,ut:T−1) �|= Φ for any ut:T−1;
� feasible if x0:tξ(xt,ut:T−1) |= Φ for some ut:T−1.
Then an online monitor is a function

M : X∗ → {0, 1} (5)

such that, for any prefix x0:t, we have

M(x0:t) = 1 ⇔ x0:t is violated, (6)

where X∗ denotes the set of all finite sequence over X .
The above defined monitor is referred to as the periodic

monitor hereafter since it needs to acquire state information xt
periodically at each time instant. In [18], an effective algorithm

has been proposed to synthesize a model-based periodic mon-
itor involving both offline computations and online execution.
Specifically, for the offline stage, one first uses the model infor-
mation to pre-compute all possible I-remaining feasible sets that
may incur for each time instant. Then for the online execution,
one simply tracks the index set I for the remaining formulae,
and the monitoring decision can be made by checking whether
or not xt ∈ XI

t .

B. Motivating Example for Aperiodic Sampling

Before formally formulating the problem, let us consider
a motivating example. We consider a nonholonomic unicycle
mobile robot working in a factory. It needs to arrive at the
charging station, marked by the green region in Fig. 1, in 10
minutes while avoiding the conveyors on its path.

Clearly, a periodic monitor can successful monitor the task
by continuously checking whether or not the robot hits the
obstacle or reaches the charging station on time. However, it
may require unnecessary observations. For example, consider
a possible trajectory shown in Fig. 1 and two location points
P1, P2 on it. The sector region around each point is the area
the robot can reach within 2 minutes according to its dynamic.
If the robot is at P1, then it may hit a conveyor in 2 minutes.
Meanwhile, when the robot is at P2, no collision is possible in 2
minutes. Therefore, to reduce the cost of sensor deployment, the
monitor can “sleep” for at least 2 minutes, instead of constantly
collecting irrelevant data.

IV. SELF-TRIGGERED MONITORING MECHANISM

In this section, we formally present the proposed self-
triggered monitoring mechanism. Compared with the periodic
monitor that passively receives state information at each time
instant, a self-triggered monitor will actively determine the
next time instant for acquiring state information. Specifically,
a self-triggered monitor works as follows:
� At each decision instant t (which is determined at the

previous decision round), it observes the current statext by,
e.g., turning on sensors, and makes a monitoring decision
0 or 1 regarding the violation of the STL task;

� Together with the binary monitoring decision, it also deter-
mines a number τ specifying after how many time instants
the next observation will be made;

� Then the system evolves according to its own dynamic
“silently” to the monitor until time instant t+ τ , at which
the above two steps are repeated.

To formalize the above process, we define an observation
history as a sequence of states with time stamps of form

� := (x0, τ0)(x
′
1, τ1) . . . (x

′
n−1, τn−1)x

′
n ∈ (X × N)∗X . (7)

Specifically, each x′i denotes the state at the i-th observation and
τi denotes the time between observations x′i and x′i+1. Note that,
we use prime inx′i since it is not the system state at time instant i.
Then we denote by H := (X × N)∗X the set of all observation
histories.

With the notion of observation histories, now we are ready to
formally define the self-triggered monitors.

Authorized licensed use limited to: University of Southern California. Downloaded on October 13,2024 at 21:13:45 UTC from IEEE Xplore. Restrictions apply.

8986 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 10, OCTOBER 2024

Definition 1 (Self-Triggered Monitors): Let Tmax < T be a
number specifying the maximum time the monitor allowed to
stay silent. A self-triggered monitor is a function

M : H → {0, 1} × {1, . . . , Tmax} (8)

that makes decisions based on the observation histories. Specif-
ically, for any observation history � ∈ H, we have M(�) :=
(MD(�),Mτ (�)), where
� MD(�) ∈ {0, 1} is the binary monitoring decision with

“0” denoting feasible and “1” denoting violated; and
� Mτ (�) ∈ {1, . . . , Tmax} is the trigger information indi-

cating the time interval to the next observation.
Once MD(�) returns 1, the monitoring process terminates.
Clearly, a self-triggered monitor reduces to the standard pe-

riodic monitor when Mτ (�) is set to be a single time unit con-
stantly. In this case, the monitor will precisely observe the entire
trajectory generated by the system. However, in general, the
monitor can only obtain partial information from the underlying
trajectory, which is captured by the following definition.

Definition 2 (Induced Observation Histories): Let M be a
self-triggered monitor and x0:t = x0x1 . . . xt be a state se-
quence generated by system (1). The observation history of x0:t

induced by M, denoted by �M(x0:t), is defined as the unique
sequence

�M(x0:t) = (x0, τ0)(x
′
1, τ1) . . . (x

′
n−1, τn−1)x

′
n ∈ H (9)

such that
1) ∀i ≥ 1 : x′i = xτ0+···+τi−1

;
2) ∀i ≥ 0 : Mτ ((x0, τ0)(x

′
1, τ1) · · · (x′i−1, τi−1)x

′
i) = τi;

3)
∑n−1

i=0 τi ≤ t <
∑n−1

i=0 τi +Mτ (�M(x0:t)).
The intuitions of the above definition are as follows. The first

condition says that states in the induced observation history are
sampled from the original state sequence at those decision time
stamps. The second condition says that the time stamp for the
i-th observation is determined by M based on the previous
observation history. Finally, the last condition says that there
is no more observation after time instant t.

Now, we formulate the self-triggered monitor synthesis prob-
lem that we solve in this paper as follows.

Problem 1 (Self-Triggered Monitor Synthesis Problem):
Given a dynamic system of form (1) and an STL formula
Φ as in (2), design a self-triggered online monitor M : H →
{0, 1} × {1, . . . , Tmax} such that for any prefix signal x0:t, we
have MD(�M(x0:t)) = 1 if and only if x0:t is violated.

We conclude this section by making some remarks regarding
the above problem formulation.

Remark 2: Under the self-triggered mechanism, only partial
signals are available to the monitor. Therefore, it is possible
that the system has two distinct trajectories having the same
observation. Therefore, Problem 1 essentially requires that the
monitor can always distinguish two trajectories such that one is
feasible and the other is violated. Furthermore, since the monitor
does not receive any information until the next trigger time
instant, any signals within this “silent” interval should also result
in the same task status.

Remark 3: In Problem 1, we do not explicitly put any opti-
mization requirement for the trigger interval Mτ (�) for each
decision instant. In principle, one may want Mτ (�) to be as

large as possible for the purpose of energy saving. Hereafter,
our solution algorithm will follow a greedy strategy, i.e., at each
decision instant, the monitor tries to maximize the current trigger
interval as long as the ambiguity requirement is satisfied without
further considering its future effect.

V. SELF-TRIGGERED ONLINE MONITORING ALGORITHM

In this section, we present our solution for synthesizing self-
triggered monitor. Specifically, we first introduce the notion
of belief states and their evolution. Then an effective online
monitoring algorithm is proposed based on the belief states.
Finally, we prove the correctness of the algorithm.

A. Belief States and Predictions

For online monitoring with periodic information, one can
always maintain a precise information (xt, It) regarding the cur-
rent status of the system, where xt is the current state and It ⊆ I
is the index set for the remaining sub-formulae representing
the progress of the task. However, for the case of self-triggered
monitoring, one of the major challenges is that one does not have
this precise information due to unobservable transitions between
two sampling instants. Hereafter, we will refer to tuple (xt, It)
as an augmented state at time instant t. Instead of maintaining
a precise augmented state at each instant, the system can only
maintain a belief state to estimate the current status of the system.
Note that, for technical purpose, in each augmented state (xt, It),
the progress of the task It does not take the effect of current state
xt, which will be carried on for the next instant.

Definition 3 (Belief States): A belief state is a set of aug-
mented states. We denote by B := 2X×I the set of all possible
belief states.

Given a belief state, each augmented state (xt, It) in it is an
explanation of the possible current status of the system. There-
fore, a belief state essentially captures all possible explanations
based on the partial information. Now suppose that the belief
state the monitor holds at instant t is b, then for the next instant
t+ 1, it can update its belief state as follows:
� If there is no observation at instant t+ 1, then it can make

an “open-loop prediction” based on the dynamic of the
system as well as the semantics of STL formulae;

� If a new state is observed, i.e., t+ 1 is the triggered instant
decided in the previous round, then it can further use the
state observation to refine the belief.

Next, we elaborate on more details about how belief states
are updated. According to the semantics of STL formulae, the
index set can be updated once a new state is reached.

Definition 4 (Index Updates): For each time instant t, we de-
fine the index update function, denoted as updatet : I × X →
I, by: for any I ⊆ I, x ∈ X , we have

updatet(I, x) =

{
i ∈ I

∣∣∣∣ [i ∈ IU
t ∧ x /∈ H1

i ∩H2
i]

∨[i ∈ IG
t ∧ t �= bi] ∨ [i /∈ It]

}
,

(10)

where, for each i ∈ IU
t , we have Φi = x ∈ H1

iU[ai,bi]x ∈ H2
i .

Intuitively, suppose that I is the remaining index set at instant
t and x is the state reached at instant t. Then updatet(I, x)
essentially excludes the index set for those sub-formulae with

Authorized licensed use limited to: University of Southern California. Downloaded on October 13,2024 at 21:13:45 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: SLEEP WHEN EVERYTHING LOOKS FINE: SELF-TRIGGERED MONITORING FOR SIGNAL TEMPORAL LOGIC TASKS 8987

temporal operatorU that have already been satisfied by reaching
state x based on the current index set I . Meanwhile, those sub-
formulae with temporal operatorG expired will not be contained
anymore.

Now, by combining the dynamic of the system with the update
function of the index set, we can define the “dynamic” over the
augmented state space.

Definition 5 (Successor Augmented States): Let (x, I) and
(x′, I ′) be two augmented states at instants t and t+ 1, respec-
tively. We say (x′, I ′) is a successor augmented state of (x, I)
from instants t to t+ 1 if

1) there exists u ∈ U such that x′ = f(x, u); and
2) I ′ = updatet(I, x).
We denote by succt(x, I) ∈ B the set of all successor aug-

mented states of (x, I) from instants t to t+ 1.
Based on the “dynamic” of augmented states, we can define

how belief states are evolved. First, without observations be-
tween two trigger instants, the belief states can be predicted in
an open-loop fashion as follow.

Definition 6 (Belief Predictions): We define the (one-step)
belief prediction function from instants t to t+ 1, denoted as
predt+1

t : B → B, by: for any b ∈ B, we have

predt+1
t (b) = ∪

(x,I)∈b
succt(x, I). (11)

The multi-step belief prediction function is defined recursively
by: for any b ∈ B and k ≥ 1, we have

predt+k
t (b) = predt+k

t+k−1(· · · (predt+2
t+1(predt+1

t (b)))). (12)

Once observations are made at those triggered instants, the
belief states can be refined as follows.

Definition 7 (Belief Refinements): We define the belief re-
finement function, denoted as refine : B ×X → B, by: for any
b ∈ B, x ∈ X , we have

refine(b, x) = {(x′, I ′) ∈ b | x′ = x} = b ∩ ({x} × I).
(13)

Intuitively, the belief refinement function simply restricts a
belief state to a smaller set that is consistent with the current
state observed. Note that, compared with the belief prediction
function, which is time-dependent, the belief refinement func-
tion is time-independent.

B. Main Monitoring Algorithm

First, we introduce two key notions that will be used then
present our overall algorithm.

Definition 8 (Safe and Determined Beliefs): Let b ∈ B be a
belief state at instant t. We say belief state b is
� safe (w.r.t instant t) if for any augmented state (x, I) ∈ b,

we have x ∈ XI
t ; and

� determined (w.r.t instant t) if for any two augmented states
(x, I), (x, I ′) ∈ b with the same state component, we have
updatet(I, x) = updatet(I

′, x).
The intuitions for the above definitions are as follows. For each

augmented state (x, I), if x �∈ XI
t , then it means that starting

from state x, remaining sub-formulae in I is no longer feasible.
Therefore, this unsafe circumstance should be avoided for any

Algorithm 1: Self-Triggered Monitor.

Procedure 1: Trigger-Time.

augmented states in a belief state. On the other hand, a belief state
is determined means that there will be no ambiguity regarding
the task progress once the actual current state is known. Recall
that, in each augmented state (x, I), the index set I has not yet
taken the effect of x into account. Therefore, the actual index set
for sub-formulae remaining is updatet(I, x) rather that I when
x is observed.

We discuss how the online monitor decides when to trigger
the next observation. Suppose at time instant t > 0, after making
an observation, the monitor knows that the current belief state
is bt, and it wants to determine an integer τ ≤ Tmax as the
time interval before the next observation. Such integer τ should
satisfy the following requirements:
� Prediction Determinacy: Since there is no observation

until time instant t+ τ , the monitor can only predict the
belief state for time instant t+ τ as b̂t+τ = predt+τ

t (bt).
Once the monitor takes observation at t+ τ and observes
a new state xt+τ , the belief state will shrink to bt+τ =
refine(b̂t+τ , xt+τ). Therefore, in order to capture the exact
task progress of the system after making the observation,
b̂t+τ has to be determined.

� Prediction Safety: Once the predicted belief state is not
safe, the monitor must immediately make an observation

Authorized licensed use limited to: University of Southern California. Downloaded on October 13,2024 at 21:13:45 UTC from IEEE Xplore. Restrictions apply.

8988 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 10, OCTOBER 2024

to resolve ambiguity in the feasibility of task. Otherwise,
the system may already become infeasible but the monitor
does not issue an alarm on time.

Combining the above two requirements together, based on the
current information bt, the largest value for the trigger interval
the monitor can select is

τ� = max{τ ≤ τ1 : predt+τ
t (bt) is determined}, (14)

where

τ1 = min{τ ≤ Tmax : predt+τ
t (bt) is not safe}. (15)

This value τ� can be selected according to procedure
Trigger-Time by iteratively computing the predicted beliefs
and checking their safety and determinacy.

Finally, we present our complete self-triggered online mon-
itoring algorithm for STL tasks in Algorithm 1. We start from
the initial instant t = 0 and I contains all the indexes in I. At
each iteration, we observe the system state and refine the belief
state. Then we check if the refined belief state is safe or not. If
it is safe, then we continue the monitoring process and employ
procedure Trigger-Time to compute the next observation
instant as well as the predicted belief states. If the refined belief
state is not safe, the monitor will issue an alarm and terminate
the process.

C. Properties of the Proposed Algorithm

In this subsection, we prove the correctness of Algorithm 1.
For any prefix state sequence x0:t, we define its induced aug-
mented state sequence by

ζ(x0:t) = (x0, I0)(x1, I1) . . . (xt, It),

where for any k = 1, . . . , t, Ik is the index set for those
sub-formulae who have not yet been satisfied by x0 · · ·xk−1,
i.e., Ik = {i ∈ I ∧ i /∈ IG

<k | x0 · · ·xk−1 �|= Φi}. We denote
by last(ζ(x0:t)) = (xt, It) the last augmented state in the
induced sequence. Then for any observation history � =
(x0, τ0)(x

′
1, τ1) . . . (x

′
n−1, τn−1)x

′
n, we define

M−1
b (�) = {ζ(x0:t) : �M(x0:t) = �}

as the set of augmented state sequence consistent with the
observation under monitor M, where t =

∑n−1
i=0 τi. We define

last(M−1
b (�)) = {last(ζ(x0:t)) | ζ(x0:t) ∈ M−1

b (�)}.
Note that, the above last(M−1

b (�)) is defined based on
the entire observation history. However, Algorithm 1 com-
putes belief in a recursive manner. Formally, still let � =
(x0, τ0)(x

′
1, τ1) . . . (x

′
n−1, τn−1)x

′
n be an observation history.

We define a belief sequence B(�) = b̂0b0b̂1b1 · · · b̂nbn recur-
sively by
� b̂0 = {(x0, I)};
� ∀k ≥ 0, bk = refine(b̂k, x′k);
� ∀k ≥ 0, b̂k+1 = predTk

Tk−1
(bk).

where Tk =
∑k

i=0 τi with T−1 = 0. According to
Algorithm 1, bn is the belief state maintained by the monitor
following observation history �.

The following result states that the belief state maintained by
the monitor is indeed the set of all possible augmented states
consistent with the observation.

Proposition 1: Let � = (x0, τ0)(x
′
1, τ1) . . . (x

′
n−1, τn−1)x

′
n

be an observation history under a given monitor M andB(�) =
b̂0b0b̂1b1 · · · b̂nbn be its induced belief state sequence. Then we
have bn = last(M−1

b (�)).
Proof: The result can be proved by induction on the length

of the observation history. Due to space constraint, the complete
proof is provided in [29]. �

Now we can establish the correctness of Algorithm 1.
Theorem 1: Algorithm 1 correctly solves Problem 1. That is,

for any x0:t generated by system (1), we have

MD(�M(x0:t)) = 1 ⇔ x0:t is violated. (16)

Proof: Let x0:t be the actual prefix signal, ζ(x0:t) =
(x0, I0)(x1, I1) . . . (xt, It) be its induced augmented state se-
quence and � = �M(x0:t) be the observation history of the
monitor. Note that, the actual augmented state sequence ζ(x0:t)
is always contained inM−1

b (�), which also means that (xt, It) ∈
last(M−1

b (�)). Furthermore, according to Proposition 1, the
belief state of the monitor after refinement isb = last(M−1

b (�)).
Now, let us argue the correctness of Algorithm 1 as follows. To

show the “⇐” direction, suppose thatx0:t is a violated sequence.
Then we know that some sub-formulae not yet satisfied must be
no longer feasible from xt, which means that xt /∈ XIt

t . This
immediately implies that b is not safe, i.e., the monitor will
issue decision MD = 1. For the “⇒” direction, suppose that
MD(�M(x0:t)) = 1. This implies that b is not safe, i.e., there
exists (x, I) ∈ b such thatx /∈ XI

t . If b is a singleton, thenx0:t is
a violated sequence. Otherwise, for all (xt, I) ∈ b, we have xt /∈
XI

t . Based on procedure Trigger-Time, b̂n is determined,
xt must be in the region consistent for index update thus the
violation is only concerned with the remaining formulae after
update. Thus we prove that x0:t is a violated sequence. �

VI. CASE STUDIES

In this section, we demonstrate our approach by case stud-
ies. We have implemented the proposed self-triggered mon-
itoring algorithm in Julia language [30] and employ pack-
age JuliaReach [31] for reachability analysis. For nonlinear
systems, reachable sets are calculated by over-approximated
zonotopes [32]. Note that, for discrete-time systems in (1), a
belief state may contain infinite augmented states since the
state space is continuous. For the purpose of computation,
we represent each belief state b equivalently in the form
of b′ = {(RI1 , I1), . . . , (RIl , Il)}, where Ii �= Ij , ∀i �= j and
RI = {x ∈ X | (x, I) ∈ b} is the region of all states whose
index set is I . All simulations were performed on a computer
with an Intel Core i9-13900H CPU and 32GB of RAM. All codes
are available at https://github.com/ChuweiW/st_om.

A. Case Study 1: Drone Altitude Control

We consider a drone for the purpose of gathering air data
at various altitudes. Therefore, we consider its altitude state z
and velocityvz , i.e.,x = [z, vz]

� ∈ X = [0, 100]× [−5, 5]. The

Authorized licensed use limited to: University of Southern California. Downloaded on October 13,2024 at 21:13:45 UTC from IEEE Xplore. Restrictions apply.

https://github.com/ChuweiW/st_om

WANG et al.: SLEEP WHEN EVERYTHING LOOKS FINE: SELF-TRIGGERED MONITORING FOR SIGNAL TEMPORAL LOGIC TASKS 8989

Fig. 2. Online monitoring of drone altitude control systems.

discrete-time dynamic of the drone is

xt+1 = Axt +But (17)

where A =
[
1 0.5

0 1

]
, B =

[
0.5

1

]
and U ⊆ [−2.5, 2.5]. In order

to initialize the process, the drone needs to first reach altitude
ranges [0, 20] and [15, 30] in the first 20 time instants to get the
permission to take off. Then between 40 ∼ 50 time instants, it
should maintain its altitude between [30, 60] until it successfully
collects required data at z ∈ [55, 60]. We set the time horizon
T = 50 and STL task is

ψ = F[0,20]z ∈ [0, 20] ∧ F[0,20]z ∈ [15, 30]

∧ z ∈ [30, 60]U[40,50]z ∈ [55, 60]. (18)

In Fig. 2(a), we show two possible trajectories of the drone
starting from different initial altitudes. In each trace, blue cir-
cles denote those triggered instants at which the monitor takes
observations. Specifically, trace 1 fails to achieve the STL task
and the red square in the trace denotes the instant from which
the task is not longer feasible anymore. One can see that the
monitor takes observations more frequently when the system is
approaching the violation of the task. On the other hand, trace 2
shows a trajectory along which the STL is achieved. Note that,
the monitor takes observations at t = 27 and t = 35. To illustrate
procedure Trigger-Time, let us focus on the evolution of the
predicted belief state from t = 34 to t = 35, which is shown in

Fig. 3. Online monitoring of spacecraft rendezvous.

Fig. 2(b). Particularly, we see that the predicted belief state for
t = 34 is still safe, while the predicted belief state for t = 35 is
no longer safe as it may contain state that is not feasible. This is
why the monitor has to make an observation at t = 35.

B. Case Study 2: Spacecraft Rendezvous

We consider a spacecraft rendezvous problem adopted
from [33], where a spacecraft chaser aims to approach another
spacecraft target in the same orbital plane satisfying some de-
sired requirements. The system model of the chaser navigating
to the target can be described by a two-dimensional nonlinear
dynamics as follows:

ẍ = n2x+ 2nẏ +
μ

r2
− μ

r3c
(r + x) +

ux
mc

ÿ = n2y − 2nẋ− μ

r3c
y +

uy
mc

,

where system state is xk = [x y ẋ ẏ]�, control inputs provided
by the thrusters are uk = [ux uy]

�. The parameters are re-
lated to geostationary equatorial orbit with μ = 3.698× 1014 ×
602m3/min2, r = 42164 km, mc = 500 kg, n =

√
μ
r3 and

rc =
√

(r + x)2 + y2. We discretize the system with sampling
time of 0.5 minutes. The constraints are x ∈ X = [−100, 0]×
[−70, 70]× [0, 10]× [0, 10] and u ∈ U = [−3, 3]× [−3, 3].

The formal specifications for the rendezvous system are
as follows. First, when the distance between chaser and tar-
get is less than 100 m, the chaser should keep rendezvous-
ing with relatively stationary velocity and stay within the
line-of-sight cone LOS = {(x, y) | (y ≥ xtan(30◦) ∧ (−y ≥
xtan(30◦)}. Furthermore, the rendezvous task should be
completed within 25 minutes in the sense that the chaser
is close enough to the target with velocity constraints.
We define Goal = {(x, y, ẋ, ẏ) | x ∈ [−6, 0] ∧ y ∈ [−2, 2] ∧
ẋ ∈ [0, 3] ∧ ẏ ∈ [0, 3]} as the region satisfying the task. Finally,
during the rendezvous process, the chaser should avoid the
Debris region represented by the red ball in Fig. 3. Therefore,
in terms of STL formula, the mission can be described by:

ψ = F[0,25]xk ∈ Goal ∧G[0,25]p /∈ Debris ∧G[0,25]p ∈ LOS,

where p denotes [x, y]� the position of the chaser.

Authorized licensed use limited to: University of Southern California. Downloaded on October 13,2024 at 21:13:45 UTC from IEEE Xplore. Restrictions apply.

8990 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 10, OCTOBER 2024

In Fig. 3, we consider a trajectory which completes the task in
advance at 40 steps (20min) and the observed states are marked
by circles. Under the self-triggered algorithm, the monitor only
samples system states for 16 times compared with the periodic
sampling strategy of 40 times. For example, consider system
state x18 marked by red circle. The blue region shows the
evolution of belief state starting from this time instant. We see
that, at time step 20, the predicted belief state intersects with
the debris. This means that, the spacecraft may hit the Debris
region. Therefore, the monitor cannot “sleep” anymore and has
to activate its sensors to solve information ambiguity. Note that,
all feasible sets and reachable sets are four dimensional but are
projected into two dimensions (position) for plotting.

We analyze the computation time needed for making online
monitoring decisions. For the first case study, since its dynamic
is very simple, the online reachable set computation can be
done very quickly, within 0.01 seconds. For the second case
study, the average time for the online computation of reachable
sets is 0.1023 seconds over 30 decision-making instants, with a
maximum processing time of 0.2396 seconds.

VII. CONCLUSION

In this paper, we introduced a novel self-triggered approach
for online monitoring of dynamical systems based on STL
specifications. In contrast to conventional online monitoring
methods employing periodic information updates, our proposed
self-triggered monitor actively determines sampling instants
for system states, offering the potential to significantly reduce
sensor energy consumption. The key principle behind our trigger
time design is to enable the monitor to remain inactive as long
as the predicted belief state exhibits no ambiguity regarding the
satisfaction of the STL task. The limitation of our approach is
that it is primarily suitable for static maps, i.e., the underlying
map remains unchanged when the monitor “sleeps”. In the
future, we would like to extend our approach to the full fragment
of STL formulae as well as dynamic maps. Also, we would like
to apply the self-trigger mechanism to address control synthesis
problems.

REFERENCES

[1] R. Yan and A. Julius, “Distributed consensus-based online monitoring of
robot swarms with temporal logic specifications,” IEEE Robot. Automat.
Lett., vol. 7, no. 4, pp. 9413–9420, Oct. 2022.

[2] E. Bonnah and K. A. Hoque, “Runtime monitoring of time window
temporal logic,” IEEE Robot. Automat. Lett., vol. 7, no. 3, pp. 5888–5895,
Jul. 2022.

[3] A. Donzé, T. Ferrere, and O. Maler, “Efficient robust monitoring for STL,”
in Proc. Int. Conf. Comput. Aided Verification, 2013, pp. 264–279.

[4] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-
valued signals,” in Proc. Int. Conf. Formal Model. Anal. Timed Syst., 2010,
pp. 92–106.

[5] O. Maler and D. Nickovic, “Monitoring temporal properties of continu-
ous signals,” Formal Techn., Modelling Anal. Timed Fault-Tolerant Syst.,
vol. 3253, pp. 152–166, 2004.

[6] M. Ma, E. Bartocci, E. Lifland, J. Stankovic, and L. Feng, “SaSTL: Spatial
aggregation signal temporal logic for runtime monitoring in smart cities,”
in Proc. ACM/IEEE 11th Int. Conf. Cyber-Physical Syst., 2020, pp. 51–62.

[7] M. Srinivasan and S. Coogan, “Control of mobile robots using barrier func-
tions under temporal logic specifications,” IEEE Trans. Robot., vol. 37,
no. 2, pp. 363–374, Apr. 2021.

[8] V. Kurtz and H. Lin, “Mixed-integer programming for signal temporal
logic with fewer binary variables,” IEEE Control Syst. Lett., vol. 6,
pp. 2635–2640, 2022.

[9] D. Sun, J. Chen, S. Mitra, and C. Fan, “Multi-agent motion planning from
signal temporal logic specifications,” IEEE Robot. Automat. Lett., vol. 7,
no. 2, pp. 3451–3458, Apr. 2022.

[10] H. Ho, J. Ouaknine, and J. Worrell, “Online monitoring of metric temporal
logic,” in Proc. Int. Conf. Runtime Verification, 2014, pp. 178–192.

[11] A. Dokhanchi, B. Hoxha, and G. Fainekos, “On-line monitoring for
temporal logic robustness,” in Proc. Int. Conf. Runtime Verification, 2014,
pp. 231–246.

[12] J. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and S. Seshia,
“Robust online monitoring of signal temporal logic,” Formal Methods
Syst. Des., vol. 51, no. 1, pp. 5–30, 2017.

[13] X. Qin and J. Deshmukh, “Clairvoyant monitoring for signal temporal
logic,” in Proc. Int. Conf. Formal Model. Anal. Timed Syst., 2020, pp. 178–
195.

[14] M. Ma, J. Stankovic, E. Bartocci, and L. Feng, “Predictive monitoring
with logic-calibrated uncertainty for cyber-physical systems,” ACM Trans.
Embedded Comput. Syst., vol. 20, no. 5s, pp. 1–25, 2021.

[15] H. Yoon and S. Sankaranarayanan, “Predictive runtime monitoring for
mobile robots using logic-based Bayesian intent inference,” in Proc. IEEE
Int. Conf. Robot. Automat., 2021, pp. 8565–8571.

[16] L. Lindemann, X. Qin, J. V. Deshmukh, and G. J. Pappas, “Conformal
prediction for STL runtime verification,” in Proc. Int. Conf. Cyber-Physical
Syst., 2023, pp. 142–153.

[17] A. Momtaz, N. Basnet, H. Abbas, and B. Bonakdarpour, “Predicate mon-
itoring in distributed cyber-physical systems,” Int. J. Softw. Tools Technol.
Transfer, vol. 25, pp. 541–556, 2023.

[18] X. Yu, W. Dong, S. Li, and X. Yin, “Model predictive monitoring of
dynamical systems for signal temporal logic specifications,” Automatica,
vol. 160, 2024, Art. no. 111445.

[19] C. Nowzari and J. Cortés, “Self-triggered coordination of robotic networks
for optimal deployment,” Automatica, vol. 48, no. 6, pp. 1077–1087, 2012.

[20] F. D. Brunner, W. Heemels, and F. Allgöwer, “Event-triggered and self-
triggered control for linear systems based on reachable sets,” Automatica,
vol. 101, pp. 15–26, 2019.

[21] D. Senejohnny, P. Tesi, and C. De Persis, “A jamming-resilient algorithm
for self-triggered network coordination,” IEEE Trans. Control Netw. Syst.,
vol. 5, no. 3, pp. 981–990, Sep. 2018.

[22] L. Lindemann, D. Maity, J. Baras, and D. Dimarogonas, “Event-triggered
feedback control for signal temporal logic tasks,” in Proc. IEEE Conf.
Decis. Control, 2018, pp. 146–151.

[23] M. Waga, É. André, and I. Hasuo, “Model-bounded monitoring of hybrid
systems,” ACM Trans. Cyber-Phys. Syst., vol. 6, no. 4, pp. 1–26, 2022.

[24] M. Althoff and J. M. Dolan, “Online verification of automated road
vehicles using reachability analysis,” IEEE Trans. Robot., vol. 30, no. 4,
pp. 903–918, Aug. 2014.

[25] Y. Chou, H. Yoon, and S. Sankaranarayanan, “Predictive runtime monitor-
ing of vehicle models using Bayesian estimation and reachability analysis,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020, pp. 2111–2118.

[26] F. Cairoli, L. Bortolussi, and N. Paoletti, “Neural predictive monitoring
under partial observability,” in Proc. Int. Conf. Runtime Verification, 2021,
pp. 121–141.

[27] W. Liu, W. Xiao, and C. Belta, “Learning robust and correct controllers
from signal temporal logic specifications using barriernet,” in Proc. IEEE
Conf. Decis. Control, 2023, pp. 7049–7054.

[28] F. Chen, M. Sewlia, and D. V. Dimarogonas, “Cooperative control of het-
erogeneous multi-agent systems under spatiotemporal constraints,” Annu.
Rev. Control, vol. 57, 2024, Art. no. 100946.

[29] C. Wang, X. Yu, J. Zhao, L. Lindemann, and X. Yin, “Sleep when
everything looks fine: Self-triggered monitoring for signal temporal logic
tasks,” 2023, arXiv:2311.15531.

[30] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM Rev., vol. 59, no. 1, pp. 65–98,
2017.

[31] S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling,
“Juliareach: A toolbox for set-based reachability,” in Proc. Hybrid Syst.
Comput. Control, 2019, pp. 39–44.

[32] M. Althoff, O. Stursberg, and M. Buss, “Computing reachable sets of hy-
brid systems using a combination of zonotopes and polytopes,” Nonlinear
Anal., Hybrid Syst., vol. 4, no. 2, pp. 233–249, 2010.

[33] N. Chan and S. Mitra, “Verifying safety of an autonomous spacecraft
rendezvous mission,” EPiC Ser. Comp., vol. 48, pp. 20–32, 2017.

Authorized licensed use limited to: University of Southern California. Downloaded on October 13,2024 at 21:13:45 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

