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ABSTRACT
Ensuring safety for vehicle overtaking systems is one of themost fundamental and challenging tasks
in autonomous driving. This task is particularly intricate when the vehicle must not only overtake
its front vehicle safely but also consider the presence of potential opposing vehicles in the opposite
lane that it will temporarily occupy. In order to tackle the overtaking task in such challenging sce-
narios, we introduce a novel integrated framework tailored for vehicle overtaking manoeuvres. Our
approach integrates the theories of varying-level control barrier functions (CBF) and time-optimal
model predictive control (MPC). The main feature of our proposed overtaking strategy is that it is
safe-by-construction, which enables rigorous mathematical proof and validation of the safety guar-
antees.We show that the proposed framework is applicablewhen the opposing vehicle is either fully
autonomous or driven by human drivers. To demonstrate our framework, we perform a set of simu-
lations for overtaking scenarios under different settings. The simulation results show the superiority
of our framework in the sense that it ensures collision-free and achieves better safety performance
compared with the standard MPC-based approach without safety guarantees.
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1. Introduction

1.1. Motivation

Over the past decade, smart vehicle control systems
have garnered significant attention due to advance-
ments in real-time computing and advanced control
theory. The benefits of implementing smart controls
have been widely acknowledged, including improved
traffic arrangements, reduced accidents and enhanced
driving comfort (Meng et al., 2018; Xu et al., 2022;
Zhou et al., 2022). In particular, high-level intelli-
gent vehicle control can be broadly categorised into
four main groups: adaptive cruise control (ACC),
lane keeping (LK), lane change (LC) and overtak-
ing. Among these categories, overtaking manoeuvres
present a distinctive challenge due to their require-
ment to consider the interaction with other vehicles
in the adjacent lane. One of the most formidable chal-
lenges in above vehicle control tasks arises in the con-
text of two-way road overtaking scenarios, as depicted
in Figure 1. Here, the vehicle faces the dual responsi-
bility of safely overtaking its front vehicle while also
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preventing possible collision with the potential oppos-
ing vehicles in the opposite lane that it will temporar-
ily occupy. A study by the German Insurers Accident
Research (UDV) revealed that the accident rate, mea-
sured in accidents per 106 vehicles km, during over-
taking on a two-way road is approximately 50% higher
than that on a one-way lane without opposing traffic
(Richter et al., 2017). This stark statistic underscores
not only the importance but also the complexity asso-
ciated with addressing this two-way road overtaking
problem, which motivates the study in this paper.

As autonomous vehicles become increasingly
human-centered and safety-critical, there is an increas-
ing demand for formal safety guarantees in the
analysis and design of autonomous driving strate-
gies. The recent advancement in control barrier
functions, such as those proposed by Ames et al.
(2017, 2019), Xiao and Belta (2022), offer a cru-
cial avenue. These advanced tools provide a system-
atic approach to ensuring safety, particularly relevant
in the safety assurance of autonomous overtaking
systems as they have a much lower computational
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Figure 1. A two-way road overtaking scenario with possible
opposing traffic.

complexity compared with reachability-based meth-
ods (Herbert et al., 2021). Existing studies often
rely on model-based methods (Chae & Yi, 2020;
Hu et al., 2021; Usman & Kunwar, 2009) or data-
driven methods (Hu et al., 2014; Li, Qiu et al., 2020;
Milanés et al., 2012) for vehicle overtaking manoeu-
vres design, but their inability to offer rigorous safety
guarantees in dynamic environments underscores the
pressing need for research. The integration of for-
mal safety assuring methods like the control barrier
functions becomes pivotal in developing safety-critical
controllers, addressing a critical gap in autonomous
vehicle overtaking.

1.2. Our contributions

Our work aims to address the gap between the present
non-verifiable and error-prone control designs for
overtaking control systems in autonomous driving and
the increasing needs for safety guarantees. Specifi-
cally, we consider a challenging two-way overtaking
scenario that includes possible opposite vehicles, as
illustrated in Figure 1. To tackle this problem, we
develop a novel framework that integrates the theo-
ries of varying-level control barrier functions (CBF)
and time-optimal model predictive control (MPC).
The main feature of our proposed overtaking strat-
egy is that it is safe-by-construction, meaning that we
can mathematically prove its safety guarantees. This
approach eliminates the need for the possible tedious
subsequential test-and-redesign cycle that often arises
when formal methods are not used.

More specifically, the main contributions of this
paper are summarised as follows:

• Firstly, we introduce a novel concept, referred to as
varying-level control barrier functions (VL-CBF),
which offers adjustable level sets. Unlike conven-
tional CBFs that operate with fixed zero super-
level sets, our novel VL-CBFs offer a dynamic and

adjustable approach. This innovation is especially
suitable for autonomous driving applications, as it
allows for the integration of driver preferences and
facilitates online adaptation of crucial parameters.

• Secondly, we present an integrated framework that
combines the proposed VL-CBF with model pre-
dictive control for vehicle overtaking in a more
complex scenario that includes potential oppos-
ing traffic. Notably, our framework addresses the
complexity of the task by solving two optimisation
problems at each time instant. The first pertains to
forward overtaking of the front vehicle, while the
second involves planning a trajectory for backward
movement to the original position when the former
problem proves unsolvable.

• We show that our proposed framework guarantees
safety for the vehicles involved, and we formally
establish this by first mathematically proving that
our VL-CBF can enforce an arbitrary user-defined
super-level set, then illustrating that at each instant,
either the forward or the backward problem in our
framework has a solution. Additionally, we show
that the planned trajectories and associated con-
trol laws effectively avert collisions between the ego
vehicle and both the front and the opposing vehi-
cles. A set of simulations are also conducted to
demonstrate the effectiveness of our results.

1.3. Related works

1.3.1. Autonomous overtakingmanoeuvres
The increasing computational power has led to
a rapid development of on-road overtaking con-
trollers in the past years (Dixit et al., 2019; Milanés
et al., 2012; Xie et al., 2022). Approaches in the lit-
erature for tackling the vehicle overtaking problem
can be broadly categorised into three types: tradi-
tional model-based methods, data-driven methods
and learning-based methods. For example, in Petrov
and Nashashibi (2014), introduced a three-phase
overtaking model which decomposes the overtaking
actions into consecutive LC, LK and LC sub-problems,
then using a kinematic model-based adaptive con-
troller to solve the overall problem. This approach
works under a simple scenario without surrounding
traffic. InDiazAlonso et al. (2008), Chae andYi (2020),
the authors used extended Kalman filters to estimate
the vehicle states in order to switch between LC and
LK modes.
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Researchers have also devised data-driven
approaches to formulate control laws by leveraging
data gathered from expert drivers and simulations (Do
et al., 2017; Li, Tan et al., 2020; Naranjo et al., 2008;
Wang et al., 2017). In the case of Wang et al. (2017),
vehicle trajectories are generated using a fuzzy infer-
ence system developed with naturalistic driving data
to compute the dangerous level. Additionally, math-
ematical state estimation methods such as those in
Luo et al. (2021), Luo, Wang, Sheng et al. (2023), are
integratedwith complex networks to provide state esti-
mation. For the two-segment lane change controller
proposed in Do et al. (2017), its aim is to emulate
human-driver behaviour. However, the accuracy of
these methods heavily depends on the quality of the
data sets and lacks robust safety guarantees.

Learning-based planning methods with safety con-
siderations have also been proposed recently in Liu
et al. (2022, 2023). For example, in Liu et al. (2023),
the authors proposed a neural network-based LC con-
troller that leverages a back-up strategy to enhance
safety. The readers are referred to Chen et al. (2021)
for more planning methods within the end-to-end
training framework.

Reinforcement learning techniques have also been
used to perform overtaking tasks in partially-known
or unknown environments (Li, Qiu et al., 2020; Liang
et al., 2018; Ngai & Yung, 2011). For example, Roso-
lia and Borrelli (2020) proposed a deep learning-based
race strategy by combining with MPC controllers.
Since learning-based methods can hardly cover all
possible scenarios that may happen on road due to the
nature of their finite training data, they still cannot
provide formal safety guarantees for overtaking tasks.

1.3.2. CBF-based vehicle control with formal
guarantees
In recent years, control barrier functions (CBFs) have
emerged as a highly successful technique for ensur-
ing the safety of autonomous systems with formal
guarantees (Ames et al., 2019). The fundamental
principle of CBFs is to represent the safety of the
system using a super-level set, the forward invari-
ance of which can be enforced through constraints
on the control inputs (Ames et al., 2019). The key
idea is to define a value function that quantifies
the distance to a safe set of states, such that it
decreases as the system moves towards the safe set

and increases otherwise. By incorporating this CBF
into control design, one can ensure that the system
remains within a predefined safe region. In the pio-
neering work by Ames et al. (2017), quadratic pro-
gramming (QP) was applied to CBF, which made
CBF computationally feasible for real-time control.
To address various challenges in system design, many
variants of CBFs have been proposed recently. For
example, exponential CBF and high-order CBF have
been developed to overcome the non-existence of first-
order Lie derivatives (Nguyen & Sreenath, 2016; Xiao
& Belta, 2022). Feasibility and discretization issues
have been addressed in the literature, with works
such as (Agrawal & Sreenath, 2017; Choi et al., 2021;
Xiao et al., 2022a; Xiong et al., 2022). Additionally,
observation-based CBFs (Dawson et al., 2022) and
decentralised CBFs (Qin et al., 2021) have been pro-
posed to extend the generality and scalability for large-
scale systems in unknown environments. Barrier func-
tions have also been utilised to enhance safety for
learning-based controllers; see, e.g. Wang et al. (2023),
Xiao et al. (2022c), Yang et al. (2023). In Wang
et al. (2023), the authors proposed a joint differen-
tiable optimisation and verification framework that
can synthesise controllers and their certificates simul-
taneously. In Xiao et al. (2022c), Yang et al. (2023),
CBFs are used as an add-on layer to neural network-
based controllers to ensure safety.

In the specific context of autonomous vehicles,
CBFs have been successfully applied to ensure safety
for four categories of basic tasks. For instance, Xu et al.
designed a composed CBF through a contract-based
method that provided safety guarantees for simul-
taneous LK and ACC (Xu et al., 2018). Lyu et al.
focussed on safe ramp merging cases, proposing a
probabilistic CBF control law under Gaussian uncer-
tainty of motion (Lyu et al., 2022). Furthermore, in
Lyu et al. (2021), the authors developed an adaptive
CBF learning structure for the ego vehicle based on
the observation of others. Particularly, for the vehi-
cle overtaking problems, He et al. proposed a rule-
based three-phase overtaking framework using a finite
state machine (FSM) to switch between different CBFs
during different overtaking phases (He et al., 2021).
The authors also proposed a race car overtaking strat-
egy that combines CBF with a learning-based MPC
method (He et al., 2022), enabling safe competition
with surrounding vehicles on a closed track. While
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these works provide basic solutions for formal safety
guarantees in overtaking problems, it should be noted
that the frameworks are developed only for simple sce-
narios without possible opposing traffic. For practical
purposes, it is necessary to take unexpected opposing
vehicles into account to ensure safety.

1.3.3. Challenges in overtaking with opposing
vehicles
As we discussed above, most existing works on
autonomous overtaking do not provide formal safety
guarantees for the entire process except (He et al.,
2021, 2022). While for He et al. (2021, 2022), they pri-
marily focus on overtaking scenarios without oppos-
ing vehicles. Notably, these scenarios are inherently
less complex than the case with opposing vehicles as
we consider in this work. Specifically, without oppos-
ing vehicles, the completion of the overtaking task
can be postponed indefinitely, allowing the ego vehi-
cle to remain in the adjacent lane. However, in the
presence of opposing vehicles, the optimisation prob-
lem has to be solved within a finite horizon since
the opposing vehicle is approaching towards the ego
vehicle. Therefore, we need to provide the estimated
time for accomplishing the overtaking task with safety
guarantees. Furthermore, the presence of opposing
vehicle may make the overtaking task infeasible, and
therefore, we also need to provide a back-up plan
for safely returning to the original point. All these
issues have not been considered in the literature,
and our work seeks to bridge this gap by proposing
an integrated method that addresses these challenges
comprehensively.

1.4. Paper organisations

The paper is organised as follows. Section 2 formulates
the two-way road overtaking problem. Section 3 revis-
its the theory of control barrier functions, and intro-
duces the model we use in this study. Section 4 pro-
poses the varying-level control barrier functions and
investigates its related properties. Section 5 introduces
our framework for two-way road overtaking, and
establishes the formal guarantee for safety. Section 6
provides a set of simulations to illustrate the pro-
posed approach, and gives comparison of the baseline
method. Finally, Section 7 summarises the paper and
discusses some future directions.

2. Problem formulation

In this paper, we focus on an overtaking scenario on a
two-way road as depicted in Figure 1. Specifically, the
current lane with the same traffic direction is denoted
byLego and the opposing lane with the opposite traffic
direction is denoted by Lopp. We term our controlled
vehicle as the ego vehicle (shown in green), denoted as
vehe; the front overtaken vehicle termed as overtaken
vehicle (shown in red), denoted as vehf , where f stands
for ‘front’; and the possible opposing vehicle (shown in
blue) is denoted as veho.

Our objective is to design an overtaking control
strategy for the ego vehicle vehe with provable safety
guarantees. Specifically, we require that:

• The ego vehicle vehe can safely overtake the front
vehicle vehf by temporarily occupying the oppo-
site lane Lopp, while ensuring collision avoidance
with both vehf and the opposing vehicle veho if the
overtaking task is feasible.

• If the overtaking task is not feasible, then ego vehicle
vehe must be able to return to its original position in
Lego safely ensuring collision avoidance with other
vehicles.

• A formal guarantee can be established for collision
avoidance and solution feasibilities throughout the
entire overtaking process.

Remark 2.1: For the sake of simplicity and without
loss of generality, in our later developments, we make
the following assumptions regarding the behaviours of
the front vehicle vehf and the opposing vehicle veho.

• For the front vehicle vehf , we assume that it is non-
accelerating during the overtaking process. This
assumption is reasonable for a rational driving sce-
nario. In fact, our approach can be extended to the
case, where vehf is accelerating or non-accelerating
but not interchangeably.

• For the opposing vehicle veho, our main analy-
sis will be based on the assumption that it is also
autonomous following the same safety-critical con-
trol law. This assumption enables us to perform
a thorough analysis. When the opposing vehicle
is driven by a human driver, we will also discuss
using conservative analysis to address any devia-
tions from our assumptions in Section 5.
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3. Preliminaries

3.1. Vehiclemodels

In this work, the general dynamics of vehicles are
described by the following nonlinear control affine
model:

ẋ = f (x) + g(x)u, (1)

where x ∈ X ⊂ Rn, and u ∈ U ⊂ Rm are the system
state and control input, respectively, with X and U be
the state and control constraints. Mappings f and g are
both assumed to be Lipschitz continuous. For any ini-
tial condition x(0) ∈ Rn, there exists a maximum time
interval Imax := [0, τmax) such that x(t) is the unique
solution to (1) on Imax.

More specifically, for the ego vehicle, we consider
a precise non-holonomic kinematic bicycle model
(Kong et al., 2015), which can be transferred into the
following control affine model (He et al., 2021):

ẋ =

⎡

⎢⎢⎣

ẋ
ẏ
ψ̇

v̇

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

v cosψ
v sinψ

0
0

⎤

⎥⎥⎦ +

⎡

⎢⎢⎣

0 −v sinψ
0 v cosψ
0 v

lr
1 0

⎤

⎥⎥⎦

[
α

β

]
,

(2)
where x = [x, y,ψ , v]⊤ denotes the state of the vehicle
and u = [α,β]⊤ denotes the input of the vehicle with
α be the acceleration at vehicle’s center of gravity (c.g.)
and β be the slip angle of the vehicle. The system states
x, y are the longitudinal and lateral positions of the c.g.
with respect to the inertial frame, respectively, andψ , v
represent the orientation and forward velocity of the
vehicle, respectively. In the rest of this paper, we will
use normal letter and bold letter to represent scalar and
vector, respectively.

For the overtaken and opposing vehicles, lateral
movements are negligible during the overtaking pro-
cess, and only longitudinal behaviours are of our inter-
est. Therefore, we use a simpler double integral model
described as follows:

ẋ =
[
ẋ
v̇

]
=

[
0 1
0 0

] [
x
v

]
+

[
0
1

]
α, (3)

where α represents the along-road longitudinal accel-
eration rate of the double integral model.

3.2. Control barrier functions

Control barrier functions (CBFs) are recently devel-
oped successful techniques for ensuring safety for con-
strained control systems (Ames et al., 2017, 2019, Xiao
et al., 2022b). The motivation to incorporate CBF into
the autonomous driving system is that, without the
need to calculate a safe reachable set through com-
plex computations (Herbert et al., 2021), CBF imposes
a linear constraint on the control input for control
affine systems, enabling fast computation that can be
carried out in real-time. Safety can be formally guar-
anteed through the forward invariance of the system
states in a super-level set. Following the definition in
Ames et al. (2017), we define the safe set C of the
system as represented by the super-level set of a time-
varying, continuously differentiable function h(x, t),
where h quantifies the safety level of the system and
can vary based on different safety requirements. Par-
ticularly, in our overtaking problem, the formulation
of h is presented in (12) and (20). To ensure collision-
free scenarios, we aim for this value function h(x, t) to
be greater than 0; thus, the safe set is expressed as

C(t) := {x ∈ Rn : h(x, t) ≥ 0}. (4)

Note that when the control law u := k(x) is locally Lip-
schitz continuous, the control affinemodel ẋ = f (x) +
g(x)k(x) is still locally Lipschitz continuous. There-
fore, for any initial condition x(0)∈C(0), system (1)
always has a unique solution within a time interval.
The safety of the system is defined by the following
forward invariance property.

Definition 3.1 (Forward Invariance and Safety (Xiao
&Belta, 2022)): The set C is said to be forward invari-
ant for a given control law u if for every x(0) ∈ C(0),
we have x(t) ∈ C(t) holds for all t ∈ [0, τmax), where
x(t) is the unique solution to (1) starting from x(0).We
say the system is safe if safe set C is forward invariant.

We use the concept of control barrier functions
to characterise the admissible set of control inputs
that guarantee the set C is forward invariant. Recall
that a continuous function κ : (−b, a)→ (−∞,∞)

for a, b∈R≥0 belongs to the extended class of K func-
tions (also called class Ke functions) if it is monoton-
ically increasing and satisfies κ(0) = 0 (Khalil, 2015).
Now we introduce the definition of CBF as follows.
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Definition 3.2 (Control Barrier Functions (Ames
et al., 2017)): Let h(x, t) : Rn × Imax→ R be a con-
tinuously differentiable function. We say h is a control
barrier function for system (1) if there exists a classKe
function κ(·) such that

sup
u∈U

[
Lf h(x, t) + Lgh(x, t)u + ∂h

∂t

]
≥ −κ(h(x, t)),

(5)
for all (x, t)∈C(t)× Imax, where Lf h(x, t) := ∂h(x,t)⊤

∂x
f (x) and Lgh(x, t) := ∂h(x,t)⊤

∂x g(x) are the Lie deriva-
tives.

Similar to the application of Lyapunov functions to
certify stability properties without the need for exact
solution calculations, the concept of control barrier
functions aims to establish the forward invariance of
a safe set, without the intricate computation of the sys-
tem’s reachable tube. In (5), the left-hand side essen-
tially represents the total derivative ḣ of the value
function h, and this leads to

ḣ(x, t) ≥ −κ ◦ h(x, t), ∀(x, t) ∈ C(t)× Imax. (6)

Adhering toNagumo’s principle (Blanchini, 1999), the
set C(t) in (4) is forward invariant. Consequently, for
any control input satisfying (5), it ensures the forward
invariance of the state who renders the value function
h(x, t) ≥ 0.

Given a CBF h(x, t), we formally write the set of all
control values that render set C safe by

Kcbf (x, t) :=
{
u ∈ U : Lf h+Lghu+ ∂h

∂t
+κ(h)≥0

}
,

(7)
which denotes the safe control input set. The following
theorem shows that the existence of a CBF can provide
formal safety guarantee for the system.

Lemma 3.1 (Corollary 2 (Ames et al., 2017)): Let
h(x, t) be a valid CBF and assume that ∂h(x,t)

∂x ̸= 0n
for all (x, t) ∈ ∂C(t)× Imax ⊂ Rn × R. Then any Lip-
schitz continuous controller u := k(x) such that u ∈
Kcbf (x, t) for every (x, t) ∈ C(t)× Imax will render set
C forward invariant.

For control affine systems in (1), Kcbf in (7) leads
to linear constraints on control inputs, which can
be incorporated into computationally tractable QP-
based controllers (Ames et al., 2017). When incorpo-
rating different driving preferences in on-road over-
taking scenarios, conventional methods require us to

redesign h case-by-case, whereaswe introduce ourVL-
CBF method to provide adjustable level set of h in the
next section.

4. Varying-level control barrier functions

In the preceding section, we presented a fundamen-
tal definition of control barrier functions as a crucial
tool for ensuring safety. In this section, we introduce
a novel concept called Varying-Level Control Barrier
Functions. This concept is aimed at improving the
explanatory power and user parametrisation capabil-
ities of CBFs.

4.1. Varying-level control barrier functions

Note that Definition 3.2 for CBF only requires the exis-
tence of a Ke function κ(·) for h. Different functions
inherently correspond to distinct autonomous system
behaviour patterns. In autonomous driving, control
laws must characterise user-defined diverse behaviour
patterns and be explainable. To this end, the con-
cept of parametric CBF (PCBF) was proposed in Lyu
et al. (2022) to capture these requirements, where the
function κ(·) is restricted to a polynomial with odd
powers of h. The coefficients in the polynomial pro-
vide parameters for the driver to choose, achieving the
purpose of user-defined diverse behaviour patterns.

However, PCBF can only enforce the zero super-
level set as described in (4). As value function h(x, t)
is typically selected as the distance between two vehi-
cles, enforcement of the zero super-level set essentially
means that two vehicles can be arbitrarily close, as
long as they do not collide. In practice, drivers are
more conservative andwant to enforce a positive super-
level set of h(x, t). This conservative degree should also
be parameterised, so that each user can choose their
safety margin. To this end, motivated by the existing
PCBF, we propose the following VL-CBF.

Definition 4.1 (Varying-Level Control Barrier Func-
tions): Given a dynamic system model as in (1), and
the nominal safe set C(t) defined as (4) with time-
varying differentiable value function h(x, t) : Rn ×
Imax→ R. Then h is said to be a varying-level control
barrier function (VL-CBF) of orderm ≥ 1 if

sup
u∈U

[Lf h(x, t) + Lgh(x, t)u + ∂h(x, t)
∂t

] ≥ −'H(x, t),

(8)
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holds for all (x, t)∈C(t)× Imax, where ' := [λ0,
λ1, . . . , λm]∈Rm+1 and H(x, t) := [1, h, h3, h5, . . . ,
h2m−1]⊤ such that 'H(x, t) is a polynomial equation
consists of a constant and odd powers of h.

The purpose of defining VL-CBF is to enforce an
arbitrary driver-defined non-negative super-level set

Cϵ(t) := {x ∈ X : h(x, t) ≥ ϵ}, (9)

such that more conservative safety requirement can be
fulfilled. Similar to the case of standard CBF, we define

Kvlcbf (x, t) :=
{
u ∈ U :Lf h+Lghu+ ∂h

∂t
+'H ≥ 0

}

(10)
as the set of safe control inputs. Then the following
result shows that this purpose can be achieved by suit-
ably choosing a negative parameter λ0, which will be
referred to as the level parameter, in'.

Theorem 4.1: Let h(x, t) be a valid VL-CBF, and
assume that ∂h

∂x ̸= 0n for all (x, t) ∈ ∂C(t)× Imax ⊂
Rn × R. Then for any ϵ ∈ R≥0 there exists a set of
parameter ', where the level parameter λ0 ∈ R≤0,
and λi ∈ R≥0 for i ∈ {1, . . . ,m}, such that any Lips-
chitz continuous controller satisfying u ∈ Kvlcbf (x, t) for
every (x, t) ∈ Cϵ(t)× Imax will render set Cϵ forward
invariant.

Proof: We define κ̃(h) := [λ1, . . . , λm][h, . . . ,
h2m−1]⊤, which is a polynomial sum starting from
the second term of the polynomial equation 'H. As
proved in Lyu et al. (2022), κ̃(h) is a class Ke function
of h. Using this new notation, (8) can be rewritten as

Lf h + Lghu + ∂h
∂t
≥ −λ0 − κ̃(h), (11)

where the right hand side of the equation consists
of a class Ke function and a level parameter λ0. For
any ϵ ∈ R≥0, the initial condition x(0) ∈ Cϵ(0) implies
h(x(0), 0) ≥ ϵ, then we show that there always exists a
λ0 that can render Cϵ forward invariant.

Let λ0 = −κ̃(ϵ) ∈ R≤0, through (11) we have ḣ ≥
κ̃(ϵ)− κ̃(h) for all t ∈ Imax whenever h > ϵ, which
suggests the value of hmight decreasewhen h is greater
than ϵ; whereas, when h→ ϵ we have ḣ ≥ 0, suggest-
ing the value of h cannot decrease further below ϵ.
Thus ∀x(0) ∈ Cϵ(0), we always have h(x, t) ≥ ϵ, ∀t ∈
Imax. This completes the proof. !

Figure 2. Arbitrary super-level set enforced by VL-CBF.

We demonstrate the varying level property as in
Figure 2, where the value function h is chosen to be
h(x, t) := x− xd − v2

2amax
where xd is the position of

the obstacle the system wants to avoid, and amax is
the maximum deceleration rate of the system, which
is a simple case of (12) without other moving vehi-
cles. As illustrated in Figure 2, we show a VL-CBF
parameterised by three parameters ' = [λ0, λ1, λ2],
under the same value function h. Specifically, different
choices of non-level parameters λ1 and λ2 yields dif-
ferent divergent horizons of its level set. Furthermore,
when those non-level parameters are fixed, choosing a
smaller level parameter λ0 yields a higher the horizon
of the super-level set for h(x, t), which implies that a
more conservative safety control strategy enforcing a
positive super-level set. The top blue curve illustrates
the case when the initial value for h is lower than the
safety level, thus the value for h will rise from the
beginning.

Remark 4.1: Note that the requirement of enforcing
the ϵ-super-level set of h can also be achieved via the
standard CBF by redefining function h. This is essen-
tially a hand-coded approach, requiring a change in
the underlying h for different ϵ. The key feature of
the proposed VL-CBF is the ability to circumvent this
manual coding. The level parameter λ0 gives the sys-
tem the ability to change the horizon of its super-level
set for h(x, t), without the need to redesign the original
h(x, t) for different conservativeness degrees. This set-
ting makes more sense for decentralised autonomous
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vehicle control, since under the identical safety crite-
ria, each individual may have its own interpretation of
the conservativeness towards the safety boundary.

4.2. Safety guarantees for two-way overtaking via
VL-CBF

For the two-way road overtaking problem, it is crucial
to guarantee that the ego vehicle (veho) does not collide
with the opposing vehicle (veho) while traversing from
Lego into the opposing lane Lopp. With the incorpo-
ration of the proposed VL-CBF, we demonstrate that
the ego vehicle and the opposing vehicle can maintain
safety, provided that the initial condition is satisfied.

Considering the longitudinal velocity of both vehi-
cles, the value function that quantifies the collision-
free safety criteria for the ego vehicle dynamics is
expressed as:

heo(xe, t) := xo − xe −
(vxe − vxo)2

2al
, (12)

where heo describes the worst-case physical condition
of the final distance between each vehicle under the
maximum deceleration rate (al). To meet the safety
requirement of collision-free overtaking, this value
function must be greater than 0.

For the opposing vehicle veho, by assuming that
it is also autonomous and adopts VL-CBF, the safety
condition is defined as

hoe(xo, t) := xo − xe −
(vxe − vxo)2

2al
. (13)

In the above equations, al is the maximum decelera-
tion rate, and xe, xo stand for the states of vehe, veho
respectively. We use xe to represent the first element
of xe in (2) with vxe := ẋe; similarly, xo and vxo are two
elements of xo in (3). Furthermore, we introduce two
symbols αxe ,αxo which will be used later, with αxe := ẍe
and αxo is the control input of the system as defined
in Equation (3). Note that in Equations (12) and (13),
xo, vxo and xe, vxe are time-varying parameters respec-
tively. As shown in Equations (12) and (13), the value
functions heo and hoe have the same expression but dif-
ferent independent variables, suggesting that they have
the same interpretation of their relative status.

The safety guarantee with respect to the opposing
vehicle during the lane borrowing process is estab-
lished as follows.

Theorem 4.2: Consider VL-CBFs defined in Equa-
tions (12) and (13), and assume that both vehe and veho
follow the safety control law defined in Equation (10).
Then if the initial safety condition '×H× ≥ 0, ∀× ∈
{eo, oe} is satisfied, the collision-free solution exists for
both vehicles under the control limits.

Proof: As the value function defined as (12), (13), we
have Heo = [1, heo, . . . , h2m−1eo ] and Hoe = [1, hoe, . . . ,
h2m−1oe ] sharing the same expression. For vehe in Lego,
to satisfy VL-CBF we have

ḣeo = vo − ve −
2(vxe − vxo)(αxe − αxo)

2al
≥ −'eoHeo

(14)
which yields

αxe − αxo ≤
al

vxe − vxo
('eoHeo + vxo − vxe ), (15)

whereas for veho in the opposite direction, we have

αxe − αxo ≤
al

vxe − vxo
('oeHoe + vxo − vxe). (16)

We first show that for all the scenarios under VL-CBF,
we can find a joint relation so that the safety can be pre-
served under the maximum deceleration limit al. We
define a new variableH := min{'×H×},× ∈ {eo, oe},
and by combining (15) and (16), we have

αxe − αxo ≤
alH

vxe − vxo
− al. (17)

To ensure the feasibility of the proposed barrier func-
tion, the right-hand side of (17) must be greater than
the lowest possible value of the difference in con-
troller value when αxe = −al,αxo = al. Note that, al is
the absolute value of the maximum deceleration rate,
which corresponds to vehicles decelerating at their
extreme capacity. Thus, the following inequality must
hold

alH
vxe − vxo

≥ −al. (18)

Since vxe − vxo > 0 when vxe is positive and vxo is nega-
tive, the feasibility of this safety solution can be guar-
anteed if the two vehicles satisfy

H + vxe − vxo ≥ 0. (19)

Satisfaction of (19) suggests the existence of the solu-
tion at least at their extreme control capability.
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Then,we show that (19) holds if the initial condition
is satisfied: we have H ≥ 0 as '×H× ≥ 0 is fulfilled.
Since vxe − vxo is positive, it follows that the inequality
in (19) is always satisfied, which indicates the feasibil-
ity of the original VL-CBF. According to Theorem 4.1,
safety can be ensured by the invariant property of its
super-level set. This completes the proof. !

Remark 4.2: In the above result, the initial safety con-
dition '×H× defines a nominal safe margin for the
vehicle, indicating the edge of the safe space under
the conservativeness degree ϵ decided by '×. Note
that, the system can further withstand disturbances by
raising the VL-CBF level to increase conservativeness,
and when λ0 = 0, this initial condition simply indi-
cates that under the maximum deceleration rate, the
two vehicles can stop at the very last moment with the
minimum conservative distance they defined, which is
their physical limit at the most extreme situation.

5. Two-way road overtaking framework

In the preceding section, we have developed the basic
tool of VL-CBF for ensuring safety in the presence of
opposing vehicles. In this section, we present our over-
all overtaking framework, which can tackle both the
front vehicle as well as the potential opposing vehicle.
To present the integrated framework, we proceed in
this section as follows:

• We begin by presenting the mathematical formu-
lation of our approach, named time-optimal con-
trol barrier function-based model predictive Con-
trol (TO-CBF-MPC). This method combines time-
optimal MPC with the previously introduced VL-
CBF. The objective is to address the front vehi-
cle overtaking problem. In this formulation, the
time-optimal control problem is solved usingMPC,
leveraging the VL-CBF for safety guarantees.

• Then we introduce an integrated overtaking frame-
work for dealing with the potential opposing traf-
fic. Specifically, at each instant, we need to solve
two safety-guarantee optimisation problems: one
for overtaking the front vehicle and the other for
returning to the original position. We prove that at
least one of these two problems is always feasible,
which provides a formal guarantees of safety for the
overall framework.

• Finally, we discuss the extensibility of our frame-
work to further incorporate the semi-autonomous
surrounding vehicles with human drivers. We show
how safety guarantees can still be ensured through
conservative analysis.

5.1. CBF-based time-optimalmodel predictive
control

First, we focus on the overtaking scenario only involv-
ing the front vehicle. We formulate this scenario as a
time-optimal control problem with safety constraints.
Specifically, we solve this problem using model pre-
dictive control (MPC) whose objective function is to
minimise the overtaking time yet maintaining a safe
distance from the front vehicle, together with other
constraints to consider the vehicle dynamics and per-
formance factors.

In order to efficiently handle the safety requirement
with respect to the front overtaken vehicle, VL-CBF
is used as a constraint in the optimisation problem.
As shown in Figure 3, we model the safety require-
ment with respect to the front vehicle by an ellipse that
covers the front vehicle, where a, b are the radius of
the ellipse. Let xf and yf be the longitudinal and lat-
eral states of the front overtaken vehicle, respectively,
and we denote xf = [xf , yf ]. xe is used as Section 4
to denote the state of the ego vehicle. We define a
(VL-)CBF

hef (xe, t) := β1∥xe(t)− xf (t)∥2

+ β2∥ye(t)− yf (t)∥2 − β3, (20)

where βi, i ∈ {1, 2, 3} are hyper-parameters satisfying
β1/β3 = a2 and β2/β3 = b2. Then this CBF defines
the desired ellipse safe region Cf with respect to the
overtaken vehicle vehf , i.e.

Cf (t) := {xe ∈ R4 : hef (xe, t) ≥ 0}. (21)

By incorporating the VL-CBF, the safety constraint on
the control input ue for overtaking vehf becomes

Lf hef + Lghefue +
∂hef
∂t
≥ 'ef Hef , (22)

which resulting in a non-negative super-level set

Cfϵ(t) := {xe ∈ R4 : h(xe, t) ≥ ϵ}, (23)

with ϵ ∈ R≥0.
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Figure 3. Relative ellipse around the front overtaken vehicle.

We formally introduce the time-optimal control
barrier function-based model predictive control prob-
lem, denoted as TO-CBF-MPC. The optimisation
problem is defined over a prediction horizon N
encompassing the entire optimisation steps. Then the
problem is formulated as follows:

• The decision variables consist of a trajectory {xe}N
of the ego vehicle, a control input sequence {u}Ne
and a sequence of time intervals {*t}N . We denote
by xie, uie and *ti the ith entries in {xe}N , {ue}N
and {*t}N respectively. Then *ti is the time inter-
val between states xie and xi+1

e within which control
input uie is applied. Their relations are captured by
the constraints in Equations (24b), (24c) and (24d).
Furthermore, Equations (24e) put constraint on the
maximum time interval between each intermediate
point in order to mitigate the inter-sampling effect
(Xiao et al., 2022c).

• The terminal constraint of the trajectory is cap-
tured by Equations (24f) and (24g). A reference
goal location p = [xg , yg] is chosen in front of the
overtaken vehicle in its longitudinal direction. The
lateral bias parameter ϵy limits the optimised final
position. Here, xg is determined based on the speed
and reaction time of the front vehicle vehf , typically
computed as xg = xf + φvf (t), with φ representing
the reaction time (usually takes 1.8 s (Xiao et al.,
2022c)).

• The safety constraint for the front vehicle (or sur-
rounding vehicle during the overtaking process) is
captured by Equation (24h), which is a VL-CBF
constraint that ensures all planned states {x}N are
collision-freewithminimumclearance to the ellipse
defined in (21) of κ̃−1(λ0), where κ̃−1 is the inverse
function of κ̃ in Theorem 4.1, and λ0 here is the first
element of'ef in (24h).

• The overall optimisation objective is to estimate and
minimise the total time taken before reaching the
goal location, expressed as

∑N−1
i=0 *ti. Thus, the

optimisation result also provides an estimated time
for completing the overtaking task.

TO-CBF-MPC:

min
{ue}N∈UN ,{xe}N∈XN ,{*t}N

J =
N−1∑

i=0
*ti

subject to (24a)

xi+1
e = f (xie) + g(xie)u

i
e*ti,

i ∈ {0, . . . ,N − 1} (24b)

uie ∈ U , i ∈ {0, . . . ,N − 1} (24c)

xie ∈ X , i ∈ {0, . . . ,N − 1} (24d)

*ti ≤ tmax, i ∈ {0, . . . ,N − 1} (24e)

xNe ≥ xg (24f)

yNe ∈ [yg − ϵy, yg + ϵy], ϵy > 0 (24g)

Lf htef + Lghtefu
i
e +

∂htef
∂t
≥ −'ef Ht

ef ,

i ∈ {0, . . . ,N − 1} (24h)

Note that when applying MPC-based control, the
above optimisation problem needs to be solved iter-
atively based on the current actual state. Specifically,
for each time instant, only the first control entry u0e ∈
{ue}N in the computed input sequence is applied. The
control input will be updated when the next optimi-
sation problem is solved. Then at the start of next
iteration,we re-measure the states of vehe and vehf , and
re-compute {ue}N by solving TO-CBF-MPC, still apply
its control entry, and so forth. The convergence criteria
is met when the first state x0e at the next iteration sat-
isfies the relationships x0e ≥ xg and y0e ∈ [yg − ϵy, yg +
ϵy], which are analogue to Equations (24f) and (24g).

Remark 5.1: It is worth remarking that the safe-by-
construction property of our solution is ensured by
the VL-CBF constraint and it is independent from the
objective function in the optimisation problem. In the
proposed TO-CBF-MPC approach, we only consider
the overtaking time as the single objective function
to simplify the setting. Importantly, this simplifica-
tion does not compromise generality, as any additional
user-preferred performancemetric can be added to the
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objective function without affecting the overall safety
property. For example, if one wants to further limit the
changing rate of the acceleration to smooth the driving
behaviour, then γu

N
∑

||ui+1
e − uie||, i ∈ {0, . . . ,N − 1}

can be added to the objective function with γu ≥ 0 as
a user-defined weight (Althoff et al., 2021).

5.2. Integrated overall overtaking framework

With the previously introduced TO-CBF-MPC for
motion planning and overtaking time estimation,
we now consider the scenario when opposing traffic
occurs while we are still borrowing the opposite lane.
In this case, we need to consider the possible position
of veho within the time horizon {xo}N to safely plan our
motion via the above TO-CBF-MPC.

Still, we assume that veho is autonomous and fol-
lows a (possibly non-identical) VL-CBF control law
whose parameters'o can be obtained by the ego vehi-
cle veho via, for example, communications. Then by
knowing parameters 'o, the ego vehicle can precisely
estimate the control upper boundof the opposing vehi-
cle when driving towards it. Therefore, when solving
the TO-CBF-MPC problem, the following constraints
need to be added into (24) in order to ensure safety
with respect to the opposing vehicle

xi+1
o = fo(xio) + go(xio)u

i
o*ti (25a)

Lf hteo + Lghteou
i
e + ∂hteo

∂t
≥ −'eoHt

eo (25b)

Lfoh
t
oe + Lgoh

t
oeu

i
o + ∂htoe

∂t
≥ −'oeHt

eo, (25c)

for i ∈ {0, . . . ,N − 1}, where (25a) is the dynamic for
veho in (3). Then, after incorporating the new VL-
CBF constraints above, we can jointly get the estimated
sequence of {xe}N , {ue}N , {xo}N , {uo}N within the pre-
diction horizon, as well as the sequence of intervals
{*t}N between time steps. Since VL-CBF (25c) reg-
ulates the most radical behaviour possible of veho, by
solving the re-formulated TO-CBF-MPC problem, the
resulting control action is collision-free to both vehf
and veho by construction, which is formally stated by
the following result.

Theorem 5.1: Suppose vehf is non-accelerating during
the overtaking process, the proposed overtaking control
strategy is safe for the ego vehicle as long as the initial
feasibility of the incorporated TO-CBF-MPC problem is
satisfied.

Proof: The initial feasibility of the above optimisa-
tion problem ensures the solution exists under current
velocity of vehf , and the potential autonomous oppos-
ing traffic, and therefore, the safety is always preserved
under the longitudinal and ellipse-shaped VL-CBFs.
And since vehf is non-accelerating, the actual time
taken to overtake the vehf (

∑
*ti) will be less than

or equal to the planned overtaking time
∑
*ti, as

we consider the relative position and velocity w.r.t.
vehe. Thus, the overtaking can be completed with less
time taken, suggesting that the constraint in (24e) will
always be satisfied, and the system can accept smaller
control input u that being contained in the original
solution space. This completes the proof. !

Remark 5.2: The developments of our framework
are based on the assumption that the strategy of the
opposing vehicle is known to the ego vehicle. When
this assumption does not hold, our framework can
still be applied by further leveraging some techniques
from the literature. One possible approach is to utilise
the parameter learning by interaction technique in
Lyu et al. (2022) that learns the driving parameters
'o through interactions on-the-fly. Another approach
is to use the conservative analysis technique to esti-
mate the worst-case of veho during the process. This
approach is more general as it can be even applied
to any possible control strategy for veho, but conse-
quently, it also is more conservative. Details on how
this conservative analysis can be integrated into our
framework is provided in Section 5.3.

The formal safety guarantee in Theorem 5.1 is based
on the assumption that vehf is cooperative in the sense
that it is non-accelerating during the overtaking pro-
cess. In practice, if vehf is also accelerating, then over-
taking task may not be feasible. In this scenario, the
ego vehicle needs a mechanism to recognise this issue
and to take defensive actions such as stopping the
overtaking process.

To address the above issue, we introduce a dual TO-
CBF-MPC structure which provides ego vehicle the
option to back to Lego when overtaking is not feasible.
Our integrated two-way road overtaking strategy with
dual TO-CBF-MPC structure is illustrated in Figure 5.
Specifically, instead of solving a safe overtaking con-
trol problem, we further solve a safe control problem,
where the goal is to return back to the front vehicle.
Therefore, two different reference goal locations p1 =
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Figure 4. The two-way road overtaking framework considering opposing traffic. The framework consists of three parts (emphasised in
the dashed colour blocks), where the left purple block depicts the control diagramwhen no opposing vehicle is around, the middle blue
block depicts the dual TO-CBF-MPCmechanism for forward and backward planning, and the right yellow block depicts the switch to our
decision maker for coping with human driver-based opposing vehicles.

[x1g , y1g] and p2 = [x2g , y2g] are selected, one in front of
vehf and the other behind vehf , which correspond to
two TO-CBF-MPC problems (with different [xg , yg]);
we term the MPC problem from [xe, ye] to [x1g , y1g] as
Q1, and to [x2g , y2g] as Q2. To put it simply, Q1 plans the
actions to overtake vehf , while Q2 serves as a back-up
strategy for this safety-critical system to abandon the
overtaking process when the feasibility of overtaking
is at risk.

At the beginning of the overtaking manoeuvre, the
ego vehicle vehe detects initial feasibility of Q1, i.e.
whether there is potential conflict when placing the
reference goal location p1, and whether there exist
opposing traffic that may cause unexpected danger
(violates the initial conditions in Theorem 4.2). If the
initial feasibility condition is fulfilled, then the over-
taking manoeuvre begins. The proposed overtaking
framework is illustrated in Figure 4. It starts by contin-
uously detecting whether there exists opposing vehicle
or not. If no opposing vehicle occurs, then it iterates
through Q1 by applying u0 at each iteration until con-
vergence. After moving out of the current lane, Q2
becomes active, with p2 as reference goal location rela-
tive to vehf at its back. WhenQ1 is unsolvable, e.g. due
to the acceleration of vehf , the system shifts toward the
loop of Q2, shown in the dashed-loop in Figure 4, and
it will be guided back into its original lane. The follow-
ing theorem shows that our framework ensures at least
one MPC problem has a solution at each instant.

Theorem 5.2: By adapting the integrated overtak-
ing framework with the dual TO-CBF-MPC structure
shown in Figure 4, at least one of the aforementioned
TO-CBF-MPC problems Q1,Q2 is feasible during the

Figure 5. Illustration of the two-way road overtaking strategy.
The upper figure shows the prediction process of the TO-CBF-MPC
problemQ1,where thegreendotted line represents the estimated
N points of vehe’s trajectory within the time T1 to reach p1 and
the blue dotted line represents the estimated veho’s trajectory
during this time. The lower figure shows the process of solving
TO-CBF-MPC problem Q2 when Q1 is infeasible.

overtaking process regardless of vehf is accelerating or
decelerating, but not interchangeably.

Proof: The start of the overtaking process suggests the
satisfaction of the initial feasibility, which states that
there exists solution to problemQ1 andQ2 so that xe to
p1 and p2 are feasible. For overtaking problem Q1, the
in-feasibility of (24) can only be affected by (24e), i.e.
when T1 > Ntmax. This corresponds to the case that
vehf accelerates when vehe overtaking, which means
the relative position and velocity of vehf is beyond our
initial measurements. We denote the predicted longi-
tudinal distance between xe and p1, p2 as l1x, l2x respec-
tively, then the violation of (24e) suggests that ∥xe −
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x1g∥ > l1x. Since p1, p2 is placed relative to the xf , it sug-
gests ∥x1g − x2g∥ = c, where c is a constant. Thus, for
xe to p2 we have ∥xe − x2g∥ < l2x, resulting in a smaller
relative distance in longitudinal direction; and since
vehf is accelerating, the relative velocity (acceleration)
between vehe and vehf is also greater for Q2, there-
fore, with shorter distance and larger acceleration gap,
T2 < T̂2, where T̂2 is the initially estimated time for
Q2. Since the satisfaction of initial feasibility suggests
T̂2 ≤ Ntmax, which leads to T2 ≤ Ntmax that guaran-
tees the feasibility of Q2. Conversely, if T1 ≤ Ntmax,
solution from xe to p1 always exists. This completes the
proof. !

The feasibility ofQ1 suggests that the path and con-
trol sequence planned at the current position can com-
plete the overtaking action without collision. Whereas
the feasibility of Q2 suggests that there exist path and
control sequence such that the ego vehicle can return
back to its original lane without collision. When the
vehf is non-accelerating, we can ensure thatQ1 is feasi-
ble, and the overtaking action can be completed; when
the feasibility of Q1 is challenged due to the accelera-
tion of vehf , we have Q2 as our formal safety solution
that can lead the ego vehicle back to its original lane
safely.

Remark 5.3: The optimisation problemQ2 in the pro-
posed dual TO-CBF-MPC framework also serves as
a fault-tolerant mechanism that further ensures the
safety of the synthesised control strategy under non-
cooperative environments. That is, under the extended
possible accelerating behaviour of vehf making Q1
unsolvable, our framework can enable the ego vehi-
cle to turn back to its original position in Lego safely.
Overall, Theorems 5.1 and 5.2 show that our integrated
framework can provide formal guarantees for gen-
eral on-road overtaking problems under the potential
opposing traffic.

Remark 5.4: Note that, the assumption that vehf is
accelerating or decelerating but not interchangeably is
essential for the correctness of our method. Without
this assumption, in fact, no safe control law exists. For
example, suppose that, when the ego vehicle is trying to
overtake the front vehicle in the adjacent lane, the front
vehicle takes aggressive actions by exactly imitating the
behaviour of the ego vehicle. That is, it accelerates as
the ego vehicle accelerates, and decelerates as the ego

vehicle decelerates. Then in this case, the ego vehi-
cle can neither overtake nor merge back to the safe
region. However, this scenario is usually considered as
‘non-rational’ or even illegal in our daily life. Particu-
larly, as pointed out by the well-known Responsibility-
Sensitive Safety (RSS) model in autonomous driving
(Shalev-Shwartz et al., 2017), one vehicle must obey
the RSS rules in order to not be the ‘cause’ of an acci-
dent, and this scenario is essentially a violation of the
RSS rules.

5.3. Incorporating semi-autonomous vehicles

In Section 5.2, we have established a formal safety
guarantee for the proposed dual TO-CBF-MPC frame-
work under the assumption that the opposing vehi-
cle is also autonomous. In this subsection, we fur-
ther discuss how the formal safety guarantee can be
carried to the case when veho is semi-autonomous
(non-cooperative) by conservative analysis.

Since the behaviours of human driver are usu-
ally irregular, we set the maximum acceleration and
speed limit to the semi-autonomous veho to get the
over-approximated prediction horizon {xo}N based on
our real-time measurement of its states at every time
step. Then the decision making process are generally
depending on three key status: time taken to com-
plete Q1,Q2; the final planned state of vehe, xeNQi

, i ∈
{1, 2}; and the final predicted state of veho, xoNQi

, i ∈
{1, 2}; where {×}NQi

, i ∈ {1, 2} represents the predicted
sequence ofN corresponding states (or controls) in the
curly brackets by solving the TO-CBF-MPC problem
of Qi; ×k

Qi
denotes the kth entry of the corresponding

sequence.
As depicted in Figure 5, whenT1 > T2, our primary

concern is the safety of the final state during overtak-
ing. As the time taken to merge back to p2 is shorter
than that of overtaking to p1, we can always merge
back, as long as overtaking is possible. When T1 ≤ T2,
we must consider whether a solution exists for Q2 if
overtaking becomes infeasible (potentially due to the
approaching behaviour of veho). Since merging back
is not time-critical, safety takes precedence in ensur-
ing the feasibility of Q2. Thus, when the feasibility of
Q2 is at risk, i.e. xoNQ2

is approaching p2, we abandon
the overtaking process and apply the control planned
by Q2. Note that, if the feasibility of Q2 is at risk when
vehe has already cut into Lego in front of vehf , we will
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Table 1. Conditions for overtaking.

Conditions

T1 > T2 xoNQ1 > xeNQ1 xoNQ2 > x2g ye ∈ Lego Overtake Go Back

• •
√

° • •
√

° • °
√

• •
√

°
√

•: satisfies, °: violates, else: not care.

proceed to complete the overtaking process. Under
all cases, whenever the feasibility of Q1 is being chal-
lenged, we merge back. Our decision maker is briefly
summarised in Table 1.

In Table 1, the first column states the condition that
whether the estimated time for TO-CBF-MPC prob-
lem Q1 is greater than that of Q2; the second column
represents whether the predicted final position of veho
will collide with the planned final position of vehf ;
the third column checks whether the merging back
operation will be safe when T1 ≤ T2; and the fourth
column checks if the ego vehicle is already in Lego at
themoment. The details of our framework is presented
in Algorithm 1.

Remark 5.5: As the above section suggests, our
framework can also be applied to the scenario when
the opposing vehicle is semi-autonomous or human-
driver-based. In this case, we use the conservative anal-
ysis by assuming the maximum acceleration rate and
the speed limit of the veho in the prediction horizon
andusing the decision table to aid the decision-making
process. Although this setting will increase the con-
servativeness under a semi-autonomous scenario, it
provides formal guarantees of safety under the worst
case.

6. Simulation results

Having illustrated the proposed two-way road over-
taking framework in the previous sections, we now
demonstrate our algorithm through simulations. Note
that, the colour convention for vehicles in the simula-
tions are inherited from Section 2.

6.1. Simulation setups

In our simulations, the dimension and physical param-
eters of all vehicles involved are adapted from the
Toyota Camry, with a length of 4.885m and width

Algorithm 1: Two-way Road Overtaking
Framework
Input: N, p1, p2
Output: T1,T2, {ue}NQ1

, {ue}NQ2
1 overtaking = True
2 veho = False
3 do
4 get relative position of vehf w.r.t. vehe
5 set virtual points p1 and p2 according to

vehf
6 detect veho
7 if veho == True then
8 get measurements xo
9 Add VL-CBF constraint (25)

10 compute T1, {xe}NQ1
, {ue}NQ1

via Q1

11 compute T2, {xe}NQ2
, {ue}NQ2

via Q2

12 if veho Semi-autonomous then
13 Estimate worst case {xo}NQ1

, {xo}NQ2
14 overtaking← decision from Table 1
15 if overtaking == False then
16 break

17 else
18 if Q1 infeasible then
19 break

20 apply ue1Q1
via Q1

21 while Q1 not converged and overtaking ==
True;

22 do
23 apply ue1Q2

via Q2

24 while Q2 not converged and overtaking ==
False;

of 1.840m. The lane width is scaled according to
averaged global standard of 3.5m. Horizon length of
the predicted steps is N = 50, and the maximum time
resolution tmax = 0.2 s. The sampling rate towards the
veho is 50Hz. The maximum acceleration rate is set
as al = 8m/s2, and the turning limit is defined as
β− = − arcsin 0.3,β+ = arcsin 0.3. The goal position
forQ1 andQ2 are established asp1 = [xe, xf + φvf (t)],
p2 = [xe, xf − φvf (t)] respectively, with φ = 1.8 s as
in Section 5.1. Adopting these values, the controller
for the framework takes the specific form of two opti-
misation problems presented in (24), as organised in
Figure 4. The control input space is defined as U =
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Figure 6. Overtaking with no opposing vehicle with constant velocity of the front vehicle at 8.3m/s (30 km/h), and the velocity of the
ego vehicle ranges from 10 to 19.4m/s (36–70 km/h).

([−al, al]× [β−,β+]), and the goal positions p1 and
p2 are used for Q1 and Q2, respectively.

To further demonstrate the robustness of our
method against uncertainties, random disturbances
µ = [µx,µy,µv] ∈ R3 are injected into the perception
module, i.e. the state information used in the opti-
misation problem are the actual states with noises.
Specifically, the perception noises are of uniform dis-
tribution such that: for the position information, we
have µx,µy ∈ [−0.5, 0.5] when the distance with the
measured objects is greater than 2m, and µx,µy ∈
[−0.1, 0.1] otherwise; and for velocity information, we
have µv in the ±10% range of the actual velocity.

The TO-CBF-MPC optimisation problem in Equa-
tion (24) is implemented in Python with CasADi
(Andersson et al., 2019) as modelling language, and
is solved via IPOPT method (Biegler & Zavala, 2009)
using a single performance core of the M1 Pro ARM
processor.

6.2. Overtakingwith no opposing vehicle

As illustrated in Figure 6, when there is no oppos-
ing traffic, the overall problem becomes a one-way
road overtaking problem. During the overtaking pro-
cess, the front vehicle vehf can vary its speed, but it
will adopt the rational driving behaviour as stated in
Section 2. The reference goal positions p1 and p2 are
displayed as the faded green rectangles in front of and
behind the vehf . The dashed ellipse around vehf is the
safety boundary enforced by the CBF based on the
relative position between vehe and vehf .

In the simulation figures, the green and orange dot-
ted circular trajectories represent the planned trajec-
tory from xe to p1 and p2 respectively derived through
Q1 and Q2. The solid black line at the back of vehe
shows the actual trajectory travelled by the ego vehicle.

The time taken to overtake the front vehicle with
different velocity configurations vf are summarised in
Table 2. For each group, 30 cases were simulated. The

Table 2. Time taken when no opposing traffic.

Speed range of vehe 36–70 km/h

Speed of vehf 25 km/h 28 km/h 32 km/h 36 km/h

min (s) 4.13 4.83 4.99 5.29
max (s) 5.27 5.94 6.44 6.63
mean (s) 4.64 5.02 5.59 5.90

ego vehicle starts from the position at 10m at 10m/s
(36 km/h), with an upper speed limit at 19.4m/s
(70 km/h). The front vehicle starts at 64m. Note that,
to cope with the introduced disturbances, the level set
in the VL-CBF was set at ϵ = κ̃−1(−λ0) = 0.3.

6.3. Overtakingwith opposing vehicles

For scenarios involving opposing vehicle during the
overtaking process, we simulate various cases to
demonstrate the effectiveness of our overall frame-
work. All simulations are conducted with prediction
horizon N = 50 and incorporate perception uncer-
tainties as introduced in Section 6.1.

Case 1: vehf is non-accelerating and veho is autonom-
ous with a known VL-CBF strategy. In this sce-
nario (Figure 7), a successful overtakingmanoeu-
vre is demonstrated when both the ego vehicle
(vehf ) and the opposing vehicle (veho) adhere to
the VL-CBF safety control strategy. The dimmed
and scattered dots represent planned trajectories
with a prediction horizon of N = 50, while the
black solid lines depict the actual trajectory of the
ego vehicle. The simulation results demonstrate
that, even in the presence of perception errors,
the overtaking process remains not only safe but
also closely aligns with the initially planned tra-
jectories when both vehf and veho adhere to the
VL-CBF strategy.

Case 2: vehf is non-accelerating and veho is human
driver-based with an unknown strategy. In
Figure 8, we illustrate a scenario where veho
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Figure 7. Snapshots from the simulation of the overtaking framework, with vehf non-accelerating and veho fully autonomous.

Figure 8. Snapshots from the simulation of the overtaking framework, with vehf non-accelerating and veho human-driver-based and
accelerating.

is human-driver-based, assumed to accelerate
towards the speed limit at αox = 1.6m/s. In this
case, the decision rules outlined in Table 1 for
conservative analysis are active. The simulation
shows that, when veho accelerates and the condi-
tion xoNQ1

≤ xeNQ1
is activated, triggering the ‘Goes

Back’ condition, the ego vehicle (vehe) safely
abandons the overtaking action.

Case 3: vehf is accelerating and veho is autonomous
with a known VL-CBF strategy. Even when the
front vehicle (vehf ) is accelerating during the
overtaking process, our method ensures safety

by allowing the ego vehicle to return to its orig-
inal position if overtaking becomes unsafe. We
consider three different ranges of accelerating
rates for vehf , conducting 30 simulations for each
range. Table 3 presents the minimum distance
and the number of successful overtaking for each
range. The results show that as the accelerating
rate of vehf increases, the chance of a successful
overtaking task decreases. Nevertheless, the ego
vehicle consistentlymaintains a safe distance out-
side the predefined ellipse-shaped safety region,
even in cases where the overtaking task fails,
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Table 3. Overtaking with different accelerating rates of vehf .

αxf ∈ (1, 3] αxf ∈ (3, 5] αxf ∈ (5, 7]

successful overtaking 29/30 11/30 0/30
min dist. with vehf (m) 1.27 1.24 1.31
min dist. with veho (m) 18.31 5.52 72.41

which coincides with our objective of prioritising
safety over task completion.

In summary, the simulation results presented in this
subsection highlight the effectiveness of our proposed
method across various driving scenarios. Our evalua-
tion emphasises the safe-by-construction property of
the framework, assuming rational behaviours of other
vehicles (Shalev-Shwartz et al., 2017). This extends the
applicability of our approach beyond existing safety-
critical overtaking manoeuvres (He et al., 2021, 2022)
to encompass general cases with potential opposing
traffic on two-way road overtaking scenarios. The next
section will provide a detailed comparison with the
baseline approach.

6.4. Comparisonwith conventional MPC

In this subsection, we conduct simulations to further
demonstrate the superiority of our approach. As dis-
cussed in Section 1.3.3, existing overtaking manoeu-
vreswith safety guarantees cannot be directly extended
to the case with opposing vehicles. Whereas if for-
mal safety guarantee is not required, the conventional
MPC-based method can be extended to the case with
opposing vehicles by further considering the ellipse-
shaped distance around the opposing vehicle as new
distance constraints, known as MPC distances con-
straints (MPC-DC) (Zeng et al., 2021). Therefore, we
compare the proposed dual TO-CBF-MPC approach
with the standard MPC-DC for some extreme scenar-
ios where the MPC-DC method may not be safe.

Specifically, we consider two simulation scenarios
(A and B), where the velocities of vehf and veho are
constant during the simulation, i.e. veho is assumed
to be unknown human driver with constant velocity.
The velocities of veho are the same in two scenarios,
but the velocity of vehf in Scenario A is fast than that
in Scenario B. Therefore, feasible overtaking actions in
Scenario B may be dangerous in Scenario A.

For each scenario, the parameters for TO-CBF-
MPC method and the MPC-DC method are as
follows:

Table 4. Minimum distance with surrounding vehicles.

(Scenario A) MPC-DC ϵ = 0.3 ϵ = 0.5

min dist. with vehf (m) −0.15 0.76 0.99
min dist. with veho (m) 0.31 85.66 86.07
safe cases 0/30 30/30 30/30
(Scenario B) MPC-DC ϵ = 0.3 ϵ = 0.5
min dist. with vehf (m) 0.37 0.77 1.02
min dist. with veho (m) 36.46 42.51 41.55
safe cases 19/30 30/30 30/30

(1) For the dual TO-CBF-MPC method, we con-
sider the setting in Case 2 as above with N = 50,
and investigate two different VL-CBF levels ϵ =
κ̃−1(−λ0) = 0.3 and ϵ = 0.5 respectively;

(2) For the MPC-DC method, we also let the predic-
tion horizon NMPC = 50, and the distance con-
straints are set as the ellipse-shaped constraints as
in VL-CBF.

We simulate each scenario of two different methods
with perception errors by repeating the simulation 30
times. The perception noises are randomly generated
using the simulation setups in Section 6.1.

To compare the two approaches, we show the mini-
mum distances with other vehicles as well as the num-
ber of safe simulation cases among the 30 cases for
each method (one MPC-DC controller and two VL-
CBF controllers with different parameters) in Table 4.
The simulation results show that, for VL-CBF con-
trollers with different levels, our framework can always
guarantee safety under disturbances for all simula-
tions generated. Furthermore, for both parameters, the
safety margins w.r.t. other vehicles are more signifi-
cant, which means that our method is more robust
than the MPC-DC method.

In Figure 9, we provide visualised simulation results
for a Scenario A case (Figure 9(a)) and a Scenario B
case (Figure 9(a)).

For scenario A in Figure 9(a), the high speed of the
opposing vehicle makes overtaking unfeasible for both
methods. Standard MPC-DC lacks a backup strategy,
leading to a dangerous collision as the opposing vehicle
serves as a moving obstacle, rendering the MPC-DC
optimisation problem unsolvable. In contrast, our pro-
posed dual TO-CBF-MPC framework can automati-
cally switch to optimisation problem Q2 (detailed in
Section 5.2) and guide the ego vehicle safely back to
Lego, terminating the overtaking process.

For Scenario B in Figure 9(b), there exists adequate
space ahead of the vehicle for safe overtaking, and the
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Figure 9. Simulations of the proposed dual TO-CBF-MPC framework compared with the MPC-DC method with opposing traffic.

optimisation problem of MPC-DC method is always
feasible. But safety is compromised due to violations of
ellipse-shaped distance constraints caused by the inter-
sampling effects and the introduced disturbances. Our
proposed dual TO-CBF-MPC framework, on the other
hand, plans trajectories with adjustable wider safety
margins, ensuring safety even between sampling inter-
vals and successfully mitigates the impact of distur-
bances. Specifically, as shown in Figure 9(b), the tra-
jectory planned by the conventionalMPC-DCmethod
(depicted in orange) is significantly closer to the front
vehicle than the trajectory planned by our proposed
framework (depicted in black). At certain points, the
orange trajectory even crosses the ellipse-shaped safety
region, posing a potential threat to safety.

7. Conclusions

In this paper, we presented a novel safe-by-
construction control framework for the general on-
road overtaking scenarios with consideration of the
potential opposing traffics.We showed the forward in-
variance of the property of an arbitrary user-defined
super-level set enforced by the proposed VL-CBF and

provided theoretical proof of the formal safety guar-
antees of our integrated framework. We demonstrated
the effectiveness of combined framework via simula-
tions of the proposed algorithm.

In the future, we plan to extend our framework to
ensure probabilistic safety guarantees under imprecise
systemmodels, as well as exploitingmethods like (Luo,
Wang, Dong et al., 2023; Luo,Wang, Hu et al., 2023) to
consider robust parameter tuning and security control
under attacks. We also intend to explore the integra-
tion of an event-triggered control approach into our
framework to further reduce computational burden by
employing lower control frequencies, enhancing the
energy efficiency of vehicle control.
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