
Automatica 160 (2024) 111445

n
i
d
s
s
t
i
l
t

i
I
c

U

(

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Model predictivemonitoring of dynamical systems for signal temporal
logic specifications✩

Xinyi Yu, Weijie Dong, Shaoyuan Li ∗, Xiang Yin ∗
Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China

a r t i c l e i n f o

Article history:
Received 26 September 2022
Received in revised form 4 September 2023
Accepted 8 November 2023
Available online xxxx

Keywords:
Signal temporal logic
Online monitoring
Feasible set

a b s t r a c t

Online monitoring aims to evaluate or to predict, at runtime, whether or not the behaviors of a system
satisfy some desired specification. It plays a key role in safety-critical cyber–physical systems. In this
work, we propose a new monitoring approach, called model predictive monitoring, for specifications
described by Signal Temporal Logic (STL) formulae. Specifically, we assume that the observed state
traces are generated by an underlying dynamical system whose model is known but the control law is
unknown. The main idea is to use the dynamic of the system to predict future states when evaluating
the satisfaction of the STL formulae. To this end, effective approaches for the computation of feasible
sets of STL formulae are provided. We show that, by explicitly utilizing the model information of the
dynamical system, the proposed online monitoring algorithm can falsify or certify of the specification in
advance compared with existing algorithms, where no model information is used. We also demonstrate
the proposed monitoring algorithm by several real world case studies.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background

Cyber–Physical Systems (CPS) are man-made modern engi-
eering systems involving both computational devices and phys-
cal dynamics. Safety is one of the major considerations in the
esigns of many CPS such as intelligent transportation systems,
mart manufacturing systems and medical devices. For those
afety-critical systems, it is crucial to determine whether or not
he behaviors of the system satisfy some desired high-level spec-
fications. For example, once we detect that the system has vio-
ated or will inevitably violate some desired specifications, addi-
ional corrective actions can be taken to ensure safety.

Specification-based monitoring is one of the major techniques
n evaluating behavior correctness of CPS (Bartocci et al., 2018).
t is well-known as a light-weight alternative to formal verifi-
ation and is particularly applicable to block-box systems with

✩ This work was supported by the National Natural Science Foundation of
China (62061136004, 62173226, 61833012). The material in this paper was not
presented at any conference. This paper was recommended for publication in
revised form by Associate Editor Dimos V. Dimarogonas under the direction of
Editor Christos G. Cassandras.
∗ Corresponding authors at: Department of Automation, Shanghai Jiao Tong
niversity, Shanghai 200240, China.

E-mail addresses: yuxinyi-12@sjtu.edu.cn (X. Yu), wjd_dollar@sjtu.edu.cn
W. Dong), syli@sjtu.edu.cn (S. Li), yinxiang@sjtu.edu.cn (X. Yin).
https://doi.org/10.1016/j.automatica.2023.111445
0005-1098/© 2023 Elsevier Ltd. All rights reserved.
unknown inputs for which formal verification cannot be applied.
In this context, it is usually assumed that the desired behavior
of the system is described by a specification formula and the
state traces (a.k.a. signals) generated by the system are observed
by a monitor that can issue alarms when the specification is
violated. In the past years, numerous algorithms have been de-
veloped for monitoring specifications described by, e.g., Linear
Temporal Logic (LTL) (Eisner et al., 2003), Metric Temporal Logic
(MTL) (Dokhanchi, Hoxha, & Fainekos, 2014; Thati & Roşu, 2005)
and Signal Temporal Logic (STL) (Deshmukh et al., 2017; Donzé,
Ferrere, & Maler, 2013). Recent applications of specification-
based monitoring techniques include, e.g., robot systems (Bon-
nah & Hoque, 2022), autonomous vehicles (Sahin, Quirynen, &
Di Cairano, 2020), fuel control system (Jakšić, Bartocci, Grosu,
Nguyen, & Ničković, 2018), smart cities (Ma, Bartocci, Lifland,
Stankovic and Feng, 2021), Internet of Things (Zhao, Zhou, Cai,
Yangui, & Xue, 2022) and intelligent medicines (Qin & Deshmukh,
2020).

Depending on what information can be utilized by the mon-
itor, the monitoring problem can be categorized as offline (e.g.,
Donzé et al., 2013; Donzé & Maler, 2010; Fainekos & Pappas,
2009) and online (e.g., Deshmukh et al., 2017; Dokhanchi et al.,
2014; Ho, Ouaknine, & Worrell, 2014). In offline monitoring, it
is assumed that the complete signal to evaluate has already been
generated and the monitor needs to determine either the Boolean
satisfaction or the quantitative satisfaction degree of the com-
plete signal. Such offline technique is usually used in the design

phase to evaluate the simulated traces of the system prototype.

https://doi.org/10.1016/j.automatica.2023.111445
https://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2023.111445&domain=pdf
mailto:yuxinyi-12@sjtu.edu.cn
mailto:wjd_dollar@sjtu.edu.cn
mailto:syli@sjtu.edu.cn
mailto:yinxiang@sjtu.edu.cn
https://doi.org/10.1016/j.automatica.2023.111445

X. Yu, W. Dong, S. Li et al. Automatica 160 (2024) 111445

O
o
T

a
t
d
Z
f
n
a
t
s
c
S
i
p

e
s
A
k
r
r
t
a
a
m
p
d
p
i
B
f
P
g
i
d

f
S
O
i
m
w
f
c
a
r
i
c
t
n
t
A
(
s
p

s
e
m
a
t
t
o
t

n the other hand, when the CPS is operating online, the monitor
nly observes partial state traces that have been generated so far.
herefore, online monitoring focuses on evaluating signals in real

time during the operation of the system in order to, e.g., issue
alarms or trigger corrective actions.

In the context of qualitative online monitoring, monitor may
make the following evaluations on the observed partial signals:
(i) the specification cannot be satisfied, i.e., there is no future
possibility to correct the signal; (ii) the specification has already
been satisfied, i.e., the future signal does not matter anymore;
or (iii) inconclusive, i.e., the signal can be either satisfied or
not depending on what will happen in the future. Furthermore,
in the quantitative setting, the monitor may also estimate the
possible robustness interval based on the observed partial signals.
In the past years, numerous algorithms have been developed for
online monitoring for specifications described by temporal logic
formulae. For example, the basic setting is to consider monitoring
the Boolean satisfaction of LTL formulae (Abate, Feron, & Coogan,
2019; Bauer, Leucker, & Schallhart, 2011; Mascle et al., 2020)
or MTL formulae (Ho et al., 2014). In Deshmukh et al. (2017)
and Dokhanchi et al. (2014), algorithms have been developed
for quantitatively monitoring the satisfaction of specifications by
using robust semantics of STL formulae.

Most of the aforementioned online monitoring techniques are
model-free in the sense that the satisfaction of the specification is
only evaluated based on the observed signal without considering
the dynamic of the system or without predicting future states.
In some cases, however, the model of the underlying system,
can provide additional information to accelerate the monitoring
process. Let us consider a scenario, where for an observed signal,
a model-free monitor may provide inconclusive evaluation since
the partial signal can be extended to either satisfiable or unsat-
isfiable signals. However, those satisfiable continuations may not
be feasible physically in the dynamical system. In this scenario,
by leveraging the model information of the dynamical system
and predicting future states, the monitor can better assert that
the specification cannot be satisfied before it is actually violated.
We refer such type of online monitoring process to as the model
predictive monitoring, which uses model information to predict
future states so that the specifications can be better evaluated.

1.2. Our contributions

In this paper, we propose a new model predictive monitor-
ing approach of dynamical systems for STL. STL formulae are
interpreted over continuous time signals and have the advan-
tage of quantitatively evaluating the degree of the satisfaction
or violation using robust semantics (Gilpin, Kurtz, & Lin, 2020;
Hashimoto, Hashimoto, & Takai, 2022; Lindemann & Dimarog-
onas, 2018, 2019; Maler & Nickovic, 2004; Salamati, Soudjani,
& Zamani, 2021). The monitor aims to issue alarms when the
specification has already or will inevitably be violated. However,
different from existing approaches, here we explicitly consider
the model information of underlying dynamical system. Specif-
ically, we consider a discrete-time nonlinear system. In order
to incorporate the model information into the evaluation of STL
formulae, we propose the notion of feasible sets, which are the
regions of states from which STL formulae can potentially be
satisfied considering the system dynamic. Effective algorithms
in a dynamic programming manner have been developed for
computing feasible sets offline. To monitor the specification in
real-time, we propose online monitoring algorithms that cor-
rectly combine both the online observed partial signals and the
offline computed feasible sets. We show that the proposed model
predictive monitoring algorithm may predict the violation of
the specification in advance compared with existing model-free
approaches. Hence, it may leave more time for the system to take
corrective actions to ensure safety.
2

1.3. Related works

Model-Based Monitoring for State-Discrete Systems: There are
lready many works along the line of leveraging model informa-
ion for the purpose of online monitoring in the state-discrete
omain during the last decade. For example, Leucker (2012) and
hang, Leucker, and Dong (2012) introduce predictive semantics
or monitoring of untimed LTL specifications for systems that are
ot black boxes. In Pinisetty et al. (2017), the authors proposed
predictive runtime verification framework for systems with

iming requirements. Recently, Ferrando et al. (2022) extend the
ingle-model predictive monitoring approach to the multi-model
ase for both centralized and compositional settings. In Yoon and
ankaranarayanan (2021), the authors introduce a Bayesian intent
nference framework leveraging the robot’s intent information to
redict future positions.
Model-Based Monitoring for State-Continuous Systems: How-

ver, there are only a few existing works along this line in the
tate-continuous domain these years. For example, Ghosh and
ndré (2022) and Waga, André, and Hasuo (2021) use prior
nowledge about the over-approximations of target systems rep-
esented by linear hybrid automata and linear dynamical systems,
espectively, to tackle the problem of scattered sampling uncer-
ainties during the monitoring process. In Momtaz, Basnet, Abbas,
nd Bonakdarpour (2021), the authors adopt a lightweight mech-
nism for incorporating bounds on system dynamics to reduce
onitoring overhead, and Abbas and Bonakdarpour (2022) ex-
loit the rough knowledge of dynamics for STL specifications. For
ata-driven STL predictive monitoring, Qin and Deshmukh (2020)
ropose to use statistical time-series analysis techniques to pred-
cate future states; Ma, Stankovic, Bartocci and Feng (2021) use
ayesian recurrent neural networks learned from data to predict
uture states with uncertainties; Lindemann, Qin, Deshmukh, and
appas (2023) apply conformal prediction to provide probability
uarantees. However, these approaches either use some rough
nformation of the model or consider a purely unknown system
ynamic.
Model Checking for STL Specifications: Our pre-computation of

easible sets is closely related to the model checking problem for
TL specifications (Bae & Lee, 2019; Lee, Yu, & Bae, 2021; Roehm,
ehlerking, Heinz, & Althoff, 2016; Yu, Lee and Bae, 2022). Specif-
cally, in the model checking problem, one is given a system
odel with an initial state and the objective is to determine
hether or not all possible traces generated by the system model

rom the initial state satisfy the STL formula. Strategies for model
hecking usually involve computations of reachable sets, which
re related to our approach. However, our problem essentially
equires to compute the satisfaction region of an STL formula tak-
ng a given prefix trace into account. This particular requirement
annot be handled by existing model checking strategies due to
he lack of automata representation of STL formulae. Finally, we
ote that the satisfaction of an STL formula can also be charac-
erized by control barrier functions (CBFs); see, e.g., Buyukkocak,
ksaray, and Yazıcıoğlu (2022) and Lindemann and Dimarogonas
2018). However, CBF only provides a sufficient condition for the
atisfaction of the task, and it may be overly conservative for the
urpose of online monitoring.
The preliminary version of some results in this paper is pre-

ented in Yu, Dong, Yin and Li (2022). Compared with Yu, Dong
t al. (2022), the present work has the following differences. The
ajor difference is that Yu, Dong et al. (2022) only consider
restrictive fragment of STL formulae in which no overlap of

ime horizons is allowed for temporal operators. In contrast,
his work handles a more general case that supports arbitrarily
verlapped temporal operators. Due to this more general set-
ing, our approaches for both the online monitoring algorithm

X. Yu, W. Dong, S. Li et al. Automatica 160 (2024) 111445

a
d
t
a
h
f
p
(

1

b
t
a
S
S
r
w

2

2

x

nd the offline pre-computation of feasible sets are also very
ifferent. Furthermore, our generalized approach also supports
he monitoring problem for the satisfaction of the STL task for
ll control input sequences, while Yu, Dong et al. (2022) can only
andle the existential case. Finally, the present work provides
our detailed case studies of real-world systems to illustrate the
roposed algorithm, which are not provided in Yu, Dong et al.
2022).

.4. Organization

The rest of the paper is organized as follows. We present some
asic preliminaries in Section 2 and formulate the problem in Sec-
ion 3. Section 4 presents the main body of the online monitoring
lgorithm, which uses feasible sets that are computed offline in
ection 5. Section 6 is the extension of monitoring satisfaction of
TL formula. The overall framework is demonstrated by several
eal world case studies in Section 7 and finally, we conclude this
ork in Section 8.

. Preliminary

.1. System model

We consider a discrete-time control system of form

k+1 = f (xk, uk), (1)

where xk ∈ X ⊂ Rn is the state at time k, uk ∈ U ⊂ Rm is
the control input at time k and f : X × U → X is the dynamic
function of the system, which is assumed to be continuous in
X × U . Throughout the paper, we assume that the state space X
and input space U are both bounded due to physical constraints.

Suppose that the system is in state xk ∈ X at time instant
k ∈ Z≥0. Then given a sequence of control inputs uk:T−1 =

ukuk+1 . . . uT−1 ∈ UT−k, the solution of the system is a sequence
of states ξf (xk,uk:T−1) = xk+1:T =xk+1 . . . xT ∈ X T−k such that
xi+1 = f (xi, ui), i = k, . . . , T − 1.

2.2. Signal temporal logic

We use Signal Temporal Logic (STL) formulae with bounded-
time temporal operators (Maler & Nickovic, 2004) to describe
whether or not the trajectory of the system satisfies some desired
high-level properties. Formally, the syntax of STL formulae is as
follows

Φ ::= ⊤ | πµ | ¬Φ | Φ1 ∧Φ2 | Φ1U[a,b]Φ2,

where ⊤ is the true predicate, πµ is an atomic predicate whose
truth value is determined by the sign of its underlying predicate
function µ : Rn

→ R and it is true at state xk when µ(xk) ≥ 0;
otherwise it is false. Notations ¬ and ∧ are the standard Boolean
operators ‘‘negation’’ and ‘‘conjunction’’, respectively, which can
further induce ‘‘disjunction’’ by Φ1 ∨ Φ2 := ¬(¬Φ1 ∧ ¬Φ2) and
‘‘implication’’ by Φ1 → Φ2 := ¬Φ1 ∨ Φ2. U[a,b] is the temporal
operator ‘‘until’’, where a, b ∈ Z≥0 are two integer instants with
a ≤ b. As we consider a discrete-time setting, we use [a, b] as a
shorthand notation for the discrete-time interval [a, b]∩Z which
is the set of all integers between a and b including a and b; this
set is non-empty when a, b ∈ Z≥0 and a ≤ b. Also we note that,
since we consider a discrete-time setting, time instant k ∈ Z≥0
does not necessarily represent the real time; the specific real time
also depends on the sampling rate when discretizing the system.

STL formulae are evaluated on state sequence x = x0x1 · · · .
We use notation (x, k) |H Φ to denote that sequence x satisfies
STL formula Φ at time instant k. The reader is referred to Maler
and Nickovic (2004) for more details on the semantics of STL
3

formulae. Particularly, we have (x, k) |H πµ iff µ(xk) ≥ 0,
i.e., µ(xk) is non-negative for the current state xk, and (x, k) |H
Φ1U[a,b]Φ2 iff ∃k′ ∈ [k+a, k+b] such that (x, k′) |H Φ2 and ∀k′′ ∈
[k, k′], we have (x, k′′) |H Φ1, i.e., Φ2 will hold at some instant
between [k + a, k + b] in the future and before that Φ1 always
holds. Furthermore, we can also induce temporal operators

• ‘‘eventually’’ F[a,b]Φ := ⊤U[a,b]Φ such that it holds when
(x, k) |H Φ for some k′ ∈ [k+ a, k+ b]; and
• ‘‘always’’ G[a,b]Φ := ¬F[a,b]¬Φ such that it holds when

(x, k) |H Φ for any k′ ∈ [k+ a, k+ b].

We write x |H Φ whenever (x, 0) |H Φ .
Given an STL formula Φ , in fact, it is well-known that the

satisfaction of Φ can be completely determined only by those
states within its horizon. Specifically, we will use notation Φ[S,T]
to emphasize that the satisfaction of formula Φ only depends on
time horizon [S, T], where S is the starting instant of Φ which
is the minimum time instant that appears in the formula and T
is the terminal instant of Φ which is the maximum sum of all
nested upper bounds. For example, for Φ = F[2,7]πµ1∧G[3,12]πµ2 ,
we have T = max{7, 12} = 12 and S = min{2, 3} = 2.

3. Problem formulation

3.1. Fragment of STL formulae

In this paper, we consider the following restricted but still
expressive enough fragments of STL formulae:

ϕ ::= ⊤ | πµ | ¬ϕ | ϕ1 ∧ ϕ2, (2a)

Φ ::= F[a,b]ϕ | G[a,b]ϕ | ϕ1U[a,b]ϕ2 | Φ1 ∧Φ2, (2b)

where ϕ1, ϕ2 are formulae of class ϕ, and Φ1,Φ2 are formulae of
class Φ . Specifically, we only allow the temporal operators to be
applied once for Boolean formulae.

Note that, for the standard ‘‘until’’ operator, ϕ1U[a,b]ϕ2 requires
that ϕ1 holds from the initial instant before ϕ2 holds. In order to
facilitate subsequent expression, we introduce a new temporal
operator U′ defined by (x, k) |H Φ1U′[a,b]Φ2 iff ∃k′ ∈ [k+ a, k+ b]
such that (x, k′) |H Φ2 and ∀k′′ ∈ [k+a, k′], we have (x, k′′) |H Φ1.
Compared with U, the new operator U′ only required that Φ1
holds from instant a before Φ2 holds. Throughout this paper, we
will refer ‘‘U′’’ to as the ‘‘until’’ operator. As illustrated by Fig. 1,
our setting is without loss of generality since we can express the
standard U using U′ by:

(x, k) |H Φ1U[a,b]Φ2 ⇔ (x, k) |H (Φ1U′[a,b]Φ2) ∧ (G[0,a]Φ1).

Intuitively, the effective horizon of U[a,b] is [0, b], while the effec-
tive horizon of U′

[a,b] is [a, b]. This separation is mainly technical
and for the sake of efficiency. As we will show later, handling ‘‘un-
til’’ is more complicated than handling ‘‘always’’, and therefore, it
is beneficial to have ‘‘until’’ with short effective horizon.

Furthermore, we can always rewrite Boolean formula ϕ in
Eq. (2a) in terms of the region of states satisfying the formula.
Specifically, for predicate πµ, its satisfaction region is the solution
of inequality µ(x) ≥ 0; we denote it by set Hµ, i.e., Hµ

=

{x ∈ X | µ(x) ≥ 0}. Similarly, we have H¬ϕ = X \ Hϕ and
Hϕ1∧ϕ2 = Hϕ1 ∩ Hϕ2 . Hereafter, instead of using ϕ, we will only
write it as x ∈ Hϕ or simply x ∈ H using its satisfaction region.

Based on the above discussion, STL formulae Φ in Eq. (2) can
be expressed equivalently by:

Φ ::=F[a,b]x ∈ H | G[a,b]x ∈ H | x ∈ H1U′
[a,b]x ∈ H2

| Φ1 ∧Φ2, (3)

where H ⊆ Rn is a set of states representing the satisfaction
region of a Boolean formula.

X. Yu, W. Dong, S. Li et al. Automatica 160 (2024) 111445

E

Fig. 1. Illustration of formulae equivalence in Example 1.

In summary, we consider STL formulae of form

Φ =

N⋀
i=1

Φ
[ai,bi]
i , (4)

where Φ[ai,bi]i is a sub-formula that applies within time interval
[ai, bi] in the form of G[ai,bi]x ∈ Hi, F[ai,bi]x ∈ Hi or x ∈ H1

i U
′

[ai,bi]
x ∈

H2
i , and N denotes the total number of sub-formulae.
We denote by I = {1, . . . ,N} the index set of all sub-

formulae. We assume that the indices are ordered according to
the starting instants of the sub-formulae, i.e., a1 ≤ a2 ≤ · · · ≤ aN .
For each sub-formula i ∈ I, we denote by Oi ∈ {G, F,U′} the
unique temporal operator in Φi. Note that, for each time instant
k, there may have multiple sub-formulae applied, and we denote
by Ik = {i ∈ I | ai ≤ k ≤ bi} the index set of sub-formulae that
are effective at instant k. Similarly, we denote by I<k = {i ∈ I |
bi < k} and I>k = {i ∈ I | k < ai} the index sets of sub-formulae
that are effective strictly before and after instant k, respectively.

xample 1. Let us consider the following STL formula of the
original form (2) with horizon T = 15

Φ = G[3,11]x ∈ HG ∧ F[5,15]x ∈ HF ∧ x ∈ H1
UU[8,14]x ∈ H2

U. (5)

The effective horizon of each sub-formula is shown in Fig. 1(a).
Equivalently, this formula can also be written in the form of (3)
as

Φ = (G[0,2]x ∈ H1
U) ∧ (G[3,7]x ∈ H1

U ∩HG)∧ (6)

(F[5,15]x ∈ HF) ∧ (G[8,11]x ∈ HG) ∧ (x ∈ H1
UU
′

[8,14]x ∈ H2
U)

which is shown in Fig. 1(b). In this case, we have I = {1, 2, 3, 4,
5} and O1,O2,O4 = G,O3 = F and O5 = U′. Also, for time instant
k = 9, we have Ik = {3, 4, 5}.

3.2. Online monitoring of STL

Given a state sequence x, whose length is equal to or longer
than the horizon of Φ , we can always completely determine
whether or not x |H Φ . However, during the operation of the
system, at each time k, we can observe the current state xk, and
therefore, only the partial signal x0:k = x0x1 · · · xk (called prefix)
is available at time instant k, and the remaining signals xk+1:T
(called suffix) will only be available in the future. We say a prefix
signal x0:k is

• violated if for any control input uk:T−1, we have x0:kξf (xk,
uk:T−1) ̸|H Φ;
• feasible if for some control input uk:T−1, we have x0:kξf (xk,

u) |H Φ .
k:T−1

4

Intuitively, a prefix signal is violated if we know for sure in
advance that the formula will be violated inevitably. For example,
for safety specification G[0,T]x ∈ H, once the system reaches a
state xk /∈ H for k < T , we know immediately that the formula is
violated. Also, if the system is in state xk from which no solution
ξf (xk,uk:T−1) can be found such that each state is in region H,
then we can also claim the formula cannot be satisfied anymore,
i.e., it is violated.

Therefore, an online monitor is a function

M : X ∗ → {0, 1}

that determines the satisfaction of formula based on the partial
signal, where X ∗ denotes the set of all finite sequences over X ,
‘‘0’’ denotes ‘‘feasible’’ and ‘‘1’’ denotes ‘‘violated’’. Then the online
monitoring problem is formulated as follows.

Problem 1. Given a dynamical system of form (1) and an STL
formula Φ as in (4), design an online monitor M : X ∗ →
{0, 1} such that for any prefix signal x0:k where k ≤ T , we have
M(x0:k) = 1 iff x0:k is a violated prefix.

Remark 1. We note that, for any prefix signal x0:k, it is a
violated prefix iff we cannot find a sequence of control inputs
uk:T−1 such that x0:kξf (xk,uk:T−1) |H Φ . The existence of such
a control sequence can be determined by the binary encoding
technique proposed in Raman et al. (2014). Therefore, a naive
approach for designing an online monitor is to solve the above
constrained satisfaction problem based on x0:k. However, such a
direct approach has the following issues

• First, the computations are performed purely online by solv-
ing a satisfaction problem, which is computationally very
challenging especially for nonlinear systems with long hori-
zon STL formulae. Hence, the monitor may not be able to
provide evaluations in time.
• Second, this requires to store the entire state sequence up

to now. It is more desirable if the monitor can just store
the satisfaction status of the formula by ‘‘forgetting’’ those
irrelevant information.

Compared with the direct approach, in this paper, we will present
an alternative approach by pre-computing the set of feasible re-
gions in an offline fashion. Then the pre-computed information
will be used online, which ensures timely online evaluations.

Remark 2. Problem 1 is formulated by assuming that the control
inputs are unknown. There are several motivations for this prob-
lem setting. Note that, an online monitor is usually implemented
as an additional component at the top of a control system, which
can be either semi-autonomous in the sense that it is controlled
by an experienced human-operator or a black-box controller in
the sense that the control law is claimed to be ‘‘correct’’ but can-
not be formally verified. For both cases, we do not know precisely
the control inputs of the system. For the purpose of safety, one
still wants to add a monitor at the top of the system. When the
control law is known, the system dynamic is already autonomous.
For this case, however, the unknown control inputs here can
be considered as disturbances from environments. Therefore, our
problem formulation can also be applied to the case of known
control law under unknown disturbances.

4. Set-based online monitoring

4.1. Remaining formulae and feasible set

As we mentioned above, our objective is to evaluate the satis-
faction of STL formulae of the form (4) which is the conjunction of
several sub-formulae. Specifically, at each instant k, the monitor
needs to determine the following two issues:

X. Yu, W. Dong, S. Li et al. Automatica 160 (2024) 111445
• for sub-formulae effective currently, check whether or not
each of them has been achieved; and
• for those sub-formulae (either effective currently or in the

future) that have not been achieved, check whether or not
the system is still able to fulfill them in the future.

To formalize the above issues, we use I ⊆ I to denote the
index set of the remaining sub-formulae (which will be referred
to as the remaining set latter), i.e., sub-formulae that have not
been achieved yet. Then we introduce the notion of I-remaining
formulae as follows.

Definition 1 (I-Remaining Formula). Given an STL formula Φ of
form (4), a subset of indices I ⊆ I and a time instant k ∈ [0, T],
I-remaining formula at instant k is defined by

Φ̂ I
k =

⋀
i∈I∩Ik

Φ
[k,bi]
i ∧

⋀
i∈I∩I>k

Φ
[ai,bi]
i , (7)

where Φ[k,bi]i is obtained from Φ
[ai,bi]
i by replacing the start in-

stant of the temporal operator from ai to k.

Intuitively, Φ̂ I
k denotes the conjunction of all sub-formulae

that have not been achieved. Clearly, sub-formulae with index in
I>k effective in the future are naturally not achieved. For sub-
formulae with index in Ik effective currently, we only consider
those in I . Furthermore, since we are only interested in the
satisfiability in the future, the formulae are truncated from the
given instant k.

Example 2 (Cont.). Let us consider the STL formula Φ in Eq. (6).
For time instant k = 7, we have I<7 = {1}, I7 = {2, 3} and
I>7 = {4, 5}. Now, suppose that the remaining index set at k = 7
is I = {3, 4, 5}, which is determined by the sequence x0:6. Then
I-remaining formula at k = 7 is Φ̂ I

7 = (F[7,15]x ∈ HF) ∧ (G[8,11]x ∈
HG) ∧ (x ∈ H1

UU
′

[8,14]x ∈ H2
U).

In order to capture whether or not the I-remaining formulae
can possibly be fulfilled in the future under the constraint of the
system dynamic, we introduce the notion of I-remaining feasible
set.

Definition 2 (I-Remaining Feasible Set). Given an STL formula Φ
of form (4), a subset of indices I ⊆ I and a time instant k ∈ [0, T],
the I-remaining feasible set at instant k, denoted by X I

k ⊆ X , is
the set of states from which there exists a solution that satisfies
the I-remaining formula at k, i.e.,

X I
k =

{
xk ∈ X

⏐⏐⏐ ∃uk:T−1 ∈ UT−k, s.t., xkξf (xk,uk:T−1) |H Φ̂ I
k

}
. (8)

In what follows, we will present the main online monitoring
algorithm by using the I-remaining feasible sets. The computation
of set X I

k will be detailed in Section 5.

4.2. Online monitoring algorithm

Note that, although we consider temporal operator ‘‘Eventu-
ally’’ in the semantics, it is subsumed by operator ‘‘Until’’ since
F[ai,bi]x ∈ Hi can be expressed as x ∈ XU′

[ai,bi]
x ∈ Hi. Therefore,

technically, we only need to handle temporal operators G and U′.
Specifically, in terms of the satisfaction:

• For sub-formula of form Φ
[ai,bi]
i = G[ai,bi]x ∈ Hi with

operator G, it is satisfied only when state xk is still in the
region Hi at the last instant bi.
• For sub-formula of form Φ

[ai,bi]
i = x ∈ H1

i U
′

[ai,bi]
x ∈ H2

i ,
however, its satisfaction can be determined at any instant
k ∈ [a , b] if state x is in region H1

∩H2.
i i k i i

5

Based on the above discussion, now we present the complete
online monitoring algorithm, which is shown in Algorithm 1. We
use a global variable I to record the indices of sub-formulae that
have not been satisfied. We start from the initial instant k = 0
(line 1) and I is set as the indices of all formulae I (line 2). The
monitor decision for each instant k is computed in the while-loop.
Specifically, the monitor first reads the current state xk (line 4)
and uses its I-remaining feasible set X I

k to issue a monitoring
decision. Specifically, if xk is not in X I

k, we know that entire
formula cannot be satisfied anymore (lines 5–7). If it is in X I

k, then
we use this state information to determine whether or not some
sub-formulae in set I are achieved based on rules discussed above
(lines 8–12). If sub-formulae Φi are satisfied, then we delete its
index i from the remaining set I (line 13). Note that we only need
to check the satisfaction of remaining sub-formulae with indices
in I∩Ik since sub-formulae with indices in I>k cannot be satisfied
at instant k. This process is repeated until remaining index set I
is empty, i.e., the entire formula is satisfied.

Algorithm 1: Online Monitoring Algorithm
Input: feasible sets
Output: monitoring decision Mk

1 k← 0
2 I ← I
3 while I ̸= ∅ do
4 read new current state xk
5 if xk /∈X I

k then
6 Mk = 1
7 return ‘‘prefix is violated’’
8 else
9 Mk = 0

10 forall i∈ I ∩ Ik do
11 if [Oi=G ∧ k=bi ∧ xk∈Hi] or
12 [Oi=U′ ∧ xk∈H1

i ∩H2
i] then

13 I ← I \ {i}

14 k← k+ 1
15 return ‘‘Φ has been satisfied’’

The following theorem establishes the correctness of Algo-
rithm 1 for Problem 1.

Theorem 1. Given a dynamical system of form (1) and an STL
formula Φ as in (4), Algorithm 1 correctly solves Problem 1 if all
feasible sets in (8) are computed exactly, i.e., it is both sound and
complete.

Proof. If the conclusion of Algorithm 1 is Mk = 1 ‘‘violated
prefix’’, i.e., xk /∈ X I

k, then according to Definition 2, starting from
xk, for any control input uk:T−1, we have xkξf (xk,uk:T−1) ̸|H Φ̂ I

k.
Therefore, we know that ∀uk:T−1 : x0:kξf (xk,uk:T−1) ̸|H Φ , which
is the same as the definition of violated prefix in the beginning
of Section 3.2. On the other hand, if the conclusion is Mk = 0
‘‘feasible prefix’’, i.e., xk ∈ X I

k, then starting from xk, there exists
a control sequence uk:T−1 such that xkξf (xk,uk:T−1) |H Φ̂ I

k by
Definition 2. Furthermore, all sub-formulae with index in I \ I
have already been satisfied by x0:k−1 for the following reasons.
From Algorithm 1, we have Mk′ = 0 and xk′ ∈ X I ′

k′ for all
k′ ∈ [0, k − 1], where I ′ is the remaining index set at instant k′.
Then for any i ∈ I \ I , we consider the following two cases:

• If Oi = G, then we have X I ′
k′ ⊆ Hi for k′ ∈ [ai, bi] according

to Definition 2 without specific computation. Then, x ′ ∈ X I ′

k k′

X. Yu, W. Dong, S. Li et al. Automatica 160 (2024) 111445

A
h

s
i

R
t
I
t

5

I
r
s
a
I
w
i
a
e
a
s

t
t
b
i

D
s

k
f
a

E
F
p
r
a

I

for all k′ ∈ [0, k−1] implies that G[ai,bi]x ∈ Hi is satisfied by
x0:k−1;
• If Oi = U′, assume Line 12 in Algorithm 1 is satisfied and i is

removed from I at instant k′, then X I ′′
k′′ ⊆ H1

i for k′′ ∈ [ai, k′]
where I ′′ is the remaining index set at instant k′′ and i ∈ I ′′,
which implies that x ∈ H1

i U
′

[ai,bi]
x ∈ H2

i is satisfied by x0:k−1.

lso, we can prove that sub-formulae G[ai,k−1]x ∈ Hi, i ∈ I ∩ Ik
ave been satisfied in the same way. Hence, the prefix x0:k is

indeed feasible for the entire Φ , since Φ̂ I
k can be satisfied, and

ub-formulae with index I \ I and ‘‘Always sub-formulae’’ with
ndex I ∩ Ik have been satisfied.

emark 3. Theorem 1 states the properties of Algorithm 1 for
he ideal case where all feasible sets can be precisely computed.
n general, over-/inner-approximation techniques are needed for
he computation of feasible sets. If we compute feasible sets X I

k
by over-approximations, then miss-alarms may be possible since
we allow states that are not actually feasible. On the other hand,
if we compute feasible sets by inner-approximations, then false-
alarms may be possible. For safety-critical systems, however, it is
more meaningful to use inner-approximations in order to avoid
miss-alarms. In terms of our implementation in Section 7, we
adopt inner-approximations for Cases 1, 3 and 4, and for Case 2,
the feasible sets are computed exactly due to its simple system
dynamic.

Remark 4. Compared with the direct approach discussed in
Remark 1, the major advantage of the proposed online monitoring
algorithm is that the online computation burden is very low.
At each time instant, instead of solving a complicated satisfac-
tion problem on-the-fly, our approach just needs to check a
set membership. Particularly, the I-remaining feasible sets can
be computed in an offline fashion and stored in the monitor.
Furthermore, our algorithm is only based on the current state xk
and do not need to remember the entire trajectory generated by
the system.

5. Pre-computations of feasible sets

In this section, we present methods for the computation of
I-remaining feasible sets X I

k at time instant k.

.1. Computation list

Recall that during online monitoring process, the monitor uses
-remaining feasible sets X I

k at each instant k, where I is the set of
emaining unsatisfied sub-formula index which is determined by
tate trajectory x0:k−1. Since the state trajectory x0:k−1 is unknown
priori at the starting instant of the system, the remaining set
also has multiple possibilities for each instant k. It seems that
e need to compute feasible sets for all subsets in 2I for each

nstant k ∈ [0, T]. However, the number of remaining sets that
re actually possible at each instant is much smaller than the
xponential worst-case due to the following observations. First,
t instant k, the remaining set I cannot contain any indices of
ub-formulae in I<k and that in I>k are all contained in I since
they have not been evaluated. Second, for each index in Ik, if the
emporal operator is ‘‘Always’’ or k is the first instant of ‘‘Until’’,
hen their index must be in set I since they cannot be satisfied
ased on the past information. Formally, we define the potential
ndex set for instant k as follows.

efinition 3 (Potential Index Set). For each instant k ∈ [0, T], we
ay subset I ⊆ I is a potential index set for instant k if

(i) I ∩ I = ∅; and
<k

6

(ii) I>k ⊆ I; and
(iii) {i ∈ Ik | [Oi = G] ∨ [Oi = U′ ∧ k = ai]} ⊆ I .

We denote by Ik the set of all potential index sets for instant
. Similarly, we define Xk = {X I

k | I ∈ Ik} as the set of all potential
easible sets for instant k. Then our offline objective is to compute
ll elements in {Xk : k ∈ [0, T]}.

xample 3 (Cont.). Let us consider the STL formula Φ in Eq. (6).
or instant k = 7, the set of all potential index sets and all
otential feasible sets are I7 = {{2, 3, 4, 5}} and X7 = {X

{2,3,4,5}
7 },

espectively. For instant k = 8, we have I8 = {{4, 5}, {3, 4, 5}}
nd X8 = {X

{4,5}
8 , X {3,4,5}8 }.

5.2. Backwards computation of feasible regions

Now we present our approach for computing all potential
feasible sets Xk for each instant k. The basis idea is to compute
Xk recursively in a backwards manner. Specifically, suppose that
we have already known the all potential feasible set in Xk+1, and
then we can use elements in Xk+1 to compute each element in
Xk.

Note that for each remaining set I ∈ Ik for instant k, there are
multiple choices I ′ ∈ Ik+1 for the next instant depending on which
currently effective sub-formulae are satisfied. Clearly, given the
current remaining set I ∈ Ik not arbitrary I ′ ∈ Ik+1 can be the
remaining set for the next instant. To this end, we introduce the
notion of successor set as follows.

Definition 4 (Successor Sets). Let I ∈ Ik be a remaining set at
instant k, we say that I ′ ∈ Ik+1 is a successor set of I for the next
instant if

∀i ∈ Ik+1 : [Oi = U′ ∧ i /∈ I] ⇒ i /∈ I ′. (9)

We denote by succ(I, k) ⊆ Ik+1 as the set of all successor sets of
I from instant k.

Intuitively, I ′ is a successor set of I says that, for any sub-
formula with ‘‘Until’’ operator, if it has been satisfied in I , then
it should also be satisfied in I ′. For the purpose of backwards
computation, we define

• IT+1 = {∅}; and
• ∀I ∈ IT : succ(I, T) = IT+1 = {∅}.

Note that, the successor set of I may not be unique in general
since for those sub-formulae that have not yet been satisfied in I
and are still effective at the next instant, they can be either in I ′
or not depending on the current state of the system. To capture
this issue, we define the satisfaction sets and consistent regions as
follows.

Definition 5 (Satisfaction Sets and Regions). Let I ∈ Ik be a
remaining set for instant k and I ′ ∈ Ik+1 be a successor set of
.

• The satisfaction set w.r.t. pair (I, I ′) is defined by

satU(I, I ′) = {i ∈ I : Oi = U′ ∧ i /∈ I ′}, (10)

which is the set of indices of sub-formulae with ‘‘Until’’
operator that are in I but not in I ′.
• The consistent region w.r.t. pair (I, I ′) is defined by

Hk(I, I ′) =
⋂

i∈I∩Ik

Hi, (11)

where

Hi =

⎧⎨⎩H1
i ∩H2

i if i ∈ satU(I, I ′)
H1

i \H
2
i if Oi = U′ ∧ i /∈ satU(I, I ′) (12)
Hi if Oi = G.

X. Yu, W. Dong, S. Li et al. Automatica 160 (2024) 111445

c
I
a

t

r
o

c

T
s

D
r
S

Υ

i
f
r
s
s
s
T

T
i
r
k

X

P
s

X

w

i

I
n

i
W
s
Φ

f
p
t

The intuitions of the above definitions are as follows. Suppose
that the current remaining set is I at instant k and becomes I ′ at
instant k + 1. Then satisfaction set satU(I, I ′) captures the index
set of ‘‘Until’’ formulae that are satisfied at instant k. Since I is
onsidered as an element in Ik, we naturally have satU(I, I ′) ⊆ Ik.
n order to trigger the evolution of the remaining set from I to I ′,
t instant k, the system should be in the consistent region Hk(I, I ′).

Specifically, we consider each sub-formula that is remaining and
effective at instant k, i.e., i ∈ I ∩ Ik. Then we have the following
hree cases as shown in Eq. (12):

• If i ∈ satU(I, I ′), then it means that the system must be in
region H1

i ∩H2
i in order to satisfy sub-formula i;

• If Oi = U′ but i /∈ satU(I, I ′), then it means that the sub-
formula i is not yet satisfied, and, therefore, the system
should be in region H1

i \H
2
i ;

• If Oi = G, then the system should stay in region Hi.

Since each sub-formula i ∈ I ∩ Ik should satisfy the above
equirements, Hk(I, I ′) is taken as the intersection of the region
f each sub-formula.
Now, for some I ∈ Ik and its successor set I ′ ∈ Ik+1, the

omputation of feasible set X I
k can be divided into two parts:

• First, it should stay in the consistent region Hk(I, I ′) at in-
stant k;
• Also, it needs to be able to reach region X I ′

k+1 in one step to
satisfy the subsequent requirements.

his observation is formalized with the help of one-step feasible
et defined as follows.

efinition 6 (One-Step Feasible Set). Let S ⊆ X be a set of states
epresenting the ‘‘target region’’. Then the one-step feasible set of
is defined by

(S) = {x ∈ X | ∃u ∈ U, s.t., f (x, u) ∈ S}. (13)

In terms of our computation of feasible regions, if the system
s evolving from I to I ′ and maintains the satisfiability of I ′

rom instant k + 1, then we know that the system should be in
egion H(I, I ′) ∩ Υ (X I ′

k+1) at instant k. However, the remaining
et I ′ for the next instant depends on the current-state of the
ystem. Therefore, to compute X I

k, we need to consider all possible
uccessor sets I ′ ∈ succ(I, k), and take the union of these regions.
his is formalized by the following theorem.

heorem 2. Suppose that I is the remaining index set and Xk+1
s the set of all potential feasible sets at next time instant. Then I-
emaining feasible set X I

k defined in Definition 2 for the time instant
can be computed as follows

I
k =

⋃
I ′∈succ(I,k)

(
Hk(I, I ′) ∩ Υ (X I ′

k+1)
)
. (14)

roof. When k = T , since succ(I, k) = {∅} and satU(I, I ′) =
atU(I,∅) = {i ∈ I : Oi = U′}, from Eq. (14), we have

I
T =

⋂
i∈satU(I,I ′)

(H1
i ∩H2

i) ∩
⋂

i∈I\satU(I,I ′)

Hi,

hich is clearly the I-remaining feasible set of Φ̂ I
k =

⋀
i∈I Φ

[T ,T]
i .

For the case of k ̸= T , we can write Φ̂ I
k in the form of Eq. (15)

n Box I, where Ik is the abbreviation of I ∩ Ik, and IGk , I
U
k are the

sets of ‘‘Always’’ and ‘‘Until’’ indices contained in Ik, respectively.
Intuitively, Eq. (15) divides I into two parts, I \ I and I ∩
k k k+1 k

7

k+1, which are the sets of indices of the last instants and the
on-last instants, respectively. We can further split Ik ∩ Ik+1

according to different temporal operators as shown in the second
line of Eq. (15). For ‘‘Until’’ sub-formulae with indices in IUk ∩Ik+1,
t can be either satisfied currently or postponed to next instant.
e denote by Î the index set for those sub-formulae that are not

atisfied currently, which can be any subset of IUk ∩ Ik+1. Then
ˆ I
k can be further rewritten as the third line of Eq. (15), where

or each possible Î , we divide the corresponding formula into two
arts: one only related to the current state (denoted by ψ1(Î)) and
he other related to the future requirements (denoted by ψ2(Î)).

We observe that, for any Î , we have xkξ (xk,uk:T−1) |H ψ1(Î) ∧
ψ2(Î) if the following holds:

• xk |H ψ1(Î),
• xk+1ξ (xk+1,uk+1:T−1) |H ψ2(Î),
• xk+1 is reachable from xk under some uk.

The first condition holds iff xk stays in region Hk(I, I ′) with I ′ =
I>k ∪ (IGk ∩ Ik+1) ∪ Î and satU(I, I ′) = (IUk \ Ik+1) ∪ (IUk ∩ Ik+1 \ Î).
The second condition holds iff xk+1 is in I ′-remaining feasible
set X I ′

k+1. The third condition holds iff xk ∈ Υ (X I ′
k+1). Therefore,

ψ(Î) := ψ1(Î) ∧ ψ2(Î) holds iff xk is in Hk(I, I ′) ∩ Υ (X I ′
k+1). Finally,

recall that Φ̂ I
k is the disjunction of all possible ψ(Î). This suffices

to consider all possible I ′ ∈ succ(I, k). Therefore, we have X I
k =⋃

I ′∈succ(I,k)

(
Hk(I, I ′) ∩ Υ (X I ′

k+1)
)

which is the same as Eq. (14),
i.e., the theorem is proved.

Example 4 (Cont.). Let us consider the STL formula Φ in Eq. (6).
For instant k = 11, assume that remaining set is I = {3, 4, 5} ∈
I11. In this case, any set in I12 = {∅, {3}, {5}, {3, 5}} could be a
possible successor set as defined in Definition 4, i.e., succ(I, 11) =
I12, and we denote by I ′1 = ∅, I

′

2 = {3}, I
′

3 = {5} and I ′4 = {3, 5}.
Note that for sub-formula Φ3 = F[5,15]x ∈ HF, we write it as
x ∈ XU′

[5,15]x ∈ HF here. For four possible successor sets, their
satisfaction sets are

satU(I, I ′1) = {3, 5}, satU(I, I
′

2) = {5},
satU(I, I ′3) = {3} and satU(I, I ′4) = ∅

respectively, and their consistent regions are

Hk(I, I ′1) =(H
1
U ∩H2

U) ∩ (X ∩HF) ∩HG,

Hk(I, I ′2) =(H
1
U ∩H2

U) ∩ (X \HF) ∩HG,

Hk(I, I ′3) =(X ∩HF) ∩ (H1
U \H

2
U) ∩HG,

Hk(I, I ′4) =(H
1
U \H

2
U) ∩ (X \HF) ∩HG,

respectively. Then, we have I-remaining feasible set at instant 11
is

X I
11 =

(
Hk(I, I ′1) ∩ Υ (X

I ′1
12)

)
∪

(
Hk(I, I ′2) ∩ Υ (X

I ′2
12)

)
∪

(
Hk(I, I ′3) ∩ Υ (X

I ′3
12)

)
∪

(
Hk(I, I ′4) ∩ Υ (X

I ′4
12)

)
.

5.3. Offline computation algorithm

Now, we present the complete procedure for offline compu-
tations of feasible sets in Algorithm 2. Initially, for each instant
k ∈ [0, T], we set Xk as the empty set since no X I

k is computed for
some I ∈ Ik (line 1). Then for the unique element X∅T+1 in XT+1, we
set it as Rn since the formula has already been finished at instant
T and there is no requirement at instant T + 1. To proceed the
backwards induction, at each instant k ∈ [0, T], for each I ∈ Ik,
we compute X I

k according to Eq. (14) by considering its all possible
successor sets at instant k+ 1 (lines 4–8).

X. Yu, W. Dong, S. Li et al. Automatica 160 (2024) 111445

a

r
g
t
t
h
t
f
b
l
s
F
s
&
&
b
w
e
t
a

m
(
f
t
t
y
m

Φ̂ I
k =

⋀
i∈I∩Ik

Φ
[k,bi]
i ∧

⋀
i∈I>k

Φ
[ai,bi]
i =

⋀
i∈Ik\Ik+1

Φ
[k,k]
i ∧

⋀
i∈Ik∩Ik+1

Φ
[k,bi]
i ∧

⋀
i∈I>k

Φ
[ai,bi]
i (15)

=

⋀
i∈Ik\Ik+1

Φ
[k,k]
i ∧

⋀
i∈IUk ∩Ik+1

Φ
[k,bi]
i ∧

⋀
i∈IGk ∩Ik+1

Φ
[k,bi]
i ∧

⋀
i∈I>k

Φ
[ai,bi]
i

=

⋁
Î⊆IUk ∩Ik+1

(⋀
i∈Ik\Ik+1

Φ
[k,k]
i ∧

⋀
i∈IUk ∩Ik+1\Î

Φ
[k,k]
i ∧

⋀
i∈Î

G[k,k]x ∈ H1
i ∧

⋀
i∈IGk ∩Ik+1

(Φ[k,k]i

ψ1(Î)

∧Φ
[k+1,bi]
i)∧

⋀
i∈Î

Φ
[k+1,bi]
i ∧

⋀
i∈I>k

Φ
[ai,bi]
i

ψ2(Î)

)

Box I.
s

Algorithm 2: Offline Computations of Feasible Sets

Input: STL formula Φ =
⋀N

i=1Φ
[ai,bi]

Output: All potential sets {Xk : k ∈ [0, T]}
1 for each k ∈ [0, T], Xk ← ∅

2 X∅T+1 ← Rn

3 k← T
4 while k ≥ 0 do
5 forall I ∈ Ik do
6 X I

k ←
⋃

I ′∈succ(I,k)

(
Hk(I, I ′) ∩ Υ (X I ′

k+1)
)

7 Xk ← Xk ∪ {X I
k}

8 k← k− 1

5.4. Numerical computation considerations

Finally, we conclude this section by discussing some consider-
tions in the numerical computation of above feasible sets.
Computations of One-Step Sets: In order to realize Algo-

ithm 2, the key is to compute one-step feasible set Υ (·). In
eneral, there is no close-form expression for such sets and
he computation highly depends on the dynamic of the sys-
em. Particularly, (inner or outer) approximation methodologies
ave been widely used in practice to achieve the trade off be-
ween the computational accuracy and complexity. For example,
or linear systems, computation methods for one-step set have
een presented subject to polytopic constraints described by
inear differential inclusions or for piece-wise affine systems;
ee, e.g., Blanchini (1994), Kerrigan (2001) and Mayne (2001).
or general nonlinear systems, however, computing the one-step
et precisely is much more challenging (Bravo, Limón, Alamo,
Camacho, 2005; Mitchell & Tomlin, 2003; Stipanović, Hwang,
Tomlin, 2003). For example, Bravo et al. (2005) proposed a

ranch and bound algorithm with interval arithmetic approach
hich provides an inner approximation with a given bound of the
rror. Furthermore, we can also use some data-driven methods
o compute it, and similar framework can be found in Devonport
nd Arcak (2020).
In our implementation in Section 7, we adopt the generic

ethod in Bravo et al. (2005). The main idea of Bravo et al.
2005) is to start with a large interval box that contains all
easible (satisfiable) sets for sure and then to iteratively divide
he box into smaller boxes and track which boxes are still within
he feasible (satisfiable) sets by some forward reachable anal-
sis tools; the readers are referred to Bravo et al. (2005) for
ore details. Note that the original algorithm in Bravo et al.
8

(2005) supports inner-approximation and can be easily extended
to over-approximation.

Complexity of Pre-Computations: To perform the pre-
computations, first, we need to compute region Hµ for each πµ.
This complexity generally depends on the nonlinearity degree of
the predication function (Evtushenko, Posypkin, Rybak, & Turkin,
2018). The complexity for computing all feasible sets is linear
in the horizon of the entire formula. Also, since we just need
to consider sets in Ik for each instant rather than the entire
power set of the index set, the total number of feasible sets to be
computed generally will not grow exponentially as the horizon
increases. However, the complexity of computing feasible sets
at instant k is exponential in terms of the cardinality of index
et Ik, especially the cardinality of index of ‘‘Until’’ operators
in Ik, since the cardinality of Ik will explode exponentially as
the number of ‘‘Until’’ operators in Ik grows. For each step in
the iteration, the complexity for computing the one-step sets for
constrained systems largely depends on the system model and
may increase exponentially with the order of the system. Finally,
it is worth mentioning again that the computations of feasible
sets are purely offline, which do not affect the complexity of the
online execution of the monitoring algorithm.

6. Extension to the case of satisfied prefixes

In the previous sections, we have formulated and solved the
problem to detect violated prefixes. In some scenarios, however,
satisfied prefixes are also of interest since the monitor may claim
the satisfaction of task in advance and save resources for future
processes. Formally, we say a prefix signal x0:k is satisfied if for
any control input uk:T−1, we have x0:kξf (xk,uk:T−1) |H Φ . Our
framework can be easily extended to the case where one is also
interested in detecting satisfied prefix before the task is actually
satisfied. Here, we introduce this extension briefly.

Online Monitoring: To detect satisfied prefixes online, we
just need to check whether or not the system can always fulfill
those I-remaining sub-formulae that have not been achieved up
to now in the future. To capture this information, we introduce
notion similar to Definition 2, called I-remaining satisfiable set as
follows:

Y I
k =

{
xk ∈ X

⏐⏐⏐∀uk:T−1 ∈ UT−k, s.t., xkξf (xk,uk:T−1) |H Φ̂ I
k

}
.

The only difference between the I-remaining feasible set and the
satisfiable set is their quantifiers ‘‘∃’’ and ‘‘∀’’. Clearly, we have
Y I
k ⊆ X I

k. Then for online monitoring Algorithm 1, to detect
satisfied prefixes, one can just add a new testing condition after
line 9: if xk ∈ Y I

k , then return ‘‘prefix is satisfied’’. The soundness
and completeness analysis of this case is consistent with that of
monitoring algorithm for only feasible prefixes in Theorem 1.

X. Yu, W. Dong, S. Li et al. Automatica 160 (2024) 111445

C

s

Y

a
a
e

7

f
E
p

Offline Computation: The computation method for satisfiable
set Y I

k is also similar to the case of feasible set and can be done
with the help of one-step satisfiable set as follows:

Υ̂ (S) = {x ∈ X | ∀u ∈ U, s.t., f (x, u) ∈ S}.

orrespondingly, the I-remaining satisfiable set Y I
k can be com-

puted with Eq. (14) by replacing one-step feasible set Υ (·) to
atisfiable set Υ̂ (·) as follows:

I
k =

⋃
I ′∈succ(I,k)

(
Hk(I, I ′) ∩ Υ̂ (X I ′

k+1)
)
,

nd for offline computation we just need to repeat lines 6-7 again
fter it in the form of satisfiable set. The correctness can be also
stablished in the same way which are omitted here.

. Case studies for online monitoring

We have implemented our proposed computation methods for
easible sets as well as satisfiable sets in Julia language (Bezanson,
delman, Karpinski, & Shah, 2017) with the help of existing
ackage JuliaReach (Benet, Forets, Sanders, & Schilling, 2019;

Bogomolov, Forets, Frehse, Potomkin, & Schilling, 2019; Forets &
Schilling, 2021). All algorithms are carried out by a computer with
i9-9900K CPU 3.60 GHz and 32 GB of RAM. Our codes are available
at https://github.com/Xinyi-Yu/MPM4STL, where more details on
the computations can be found.

Then we illustrate our online monitoring algorithm by apply-
ing it to four different case studies: building temperature control,
double integrator, nonholonomic mobile robot and spacecraft
rendezvous. Specifically, the offline computations are performed
with one-step set computation method in Bravo et al. (2005)
with some approximations except the second case study, whose
feasible sets are computed analytically and exactly due to its
simple linear model structure. Furthermore, for the first and the
third case studies, we detect both violated and satisfied prefixes,
while for the second and the fourth case studies, we only detect
violated prefixed since most of their I-remaining satisfiable sets
are empty. The total execution times for pre-computations of
feasible sets in the four case studies are 1 min, 55 min, 3.3 h, and
2.1 h, respectively. The shorter execution time for the first case
study can be attributed to its simpler system dynamics compared
to the other case studies. We show that, by leveraging the model
information of the dynamical system, our model-based approach
may provide better monitoring evaluations compared with purely
model-free approaches.

7.1. Building temperature control

We consider the problem of monitoring the temperature of
a single zone building whose dynamic is given by the following
difference equation

xk+1 = xk + τs(αe(Te − xk)+ αH (Th − xk)uk),

where state xk ∈ X = [0, 45] denotes the zone temperature of
building the at instant k, control input uk ∈ U = [0, 1] is the ratio
of the heater valve, τs = 1 min is the sampling time, Th = 55 ◦C
is the heater temperature, Te = 0 ◦C is outside temperature, and
αe = 0.06 and αH = 0.08 are the heat exchange coefficients. The
model is adopted from Jagtap, Soudjani, and Zamani (2020).

The objective of the temperature control system is to warm
the single room to specific comfortable environment between
20 ◦C–25 ◦C in 8 min, and then keep the temperature in this
interval from 10 to 15 min, which can be described by the
following STL formula

Φ := F x ∈ [20, 25] ∧ G x ∈ [20, 25].
[0,8] k [10,15] k

9

Fig. 2. Three signals for the building temperature control system. (For inter-
pretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Before starting the online monitoring process, we first compute
the I-remaining feasible and satisfiable sets of STL formula Φ
by Algorithm 2 for each time instant k and for all I ∈ Ik.
The offline computation results are shown in Fig. 2. Specifically,
areas filled with black dotted lines and blue colors are {1, 2}-
remaining feasible set and {2}-remaining feasible set respectively,
and red dotted lines denote {2}-remaining satisfiable sets. Some
black horizontal lines in the figure were caused by one-step set
computation since the computation needs to divide boxes into
smaller ones. Note that satisfied sets Y {1,2}k for all instants and
Y {2}k for k ∈ [1, 13] are all empty.

During the online monitoring process, the monitor observes
the current state at each time and makes evaluations. For exam-
ple, let us consider three possible state traces generated by the
system shown as the two blue lines and a red line in Fig. 2. At
instant k = 4 and k = 10 respectively, using the model-free
approach, one can only make the inconclusive evaluations for the
two blue lines since the future signals can either satisfy remaining
tasks or not without any constraints. However, using our model-
based approach, since x4 /∈ X {1,2}4 for the below blue line and x10 /∈
X {2}10 for the above, we can conclude immediately that the formula
will be violated inevitably since there exists no controller under
which the STL formula can be satisfied. Therefore, compared with
existing model-free algorithms (Deshmukh et al., 2017; Ho et al.,
2014), our method can claim the violation of specification in ad-
vance at instant 4 and 10 respectively, while existing algorithms
cannot provide a clear violation conclusion. Also, for the red line,
we can claim at instant 14 that the task will be satisfied definitely
in the future since x14 ∈ Y {2}14 which implies that the next state x15
will be in [20, 25] no matter what controller u14 is, although it has
not been satisfied currently according to model-free approaches.

7.2. Double integrator

For the second case study, we consider the planar motion
of a single robot with double integrator dynamic, where the
system model and temporal logic task are similar to those studied
in Lindemann and Dimarogonas (2017). The system model with
a sampling period of 0.5 s is as follows

xk+1 =

⎡⎢⎣1 0.5 0 0
0 1 0 0
0 0 1 0.5
0 0 0 1

⎤⎥⎦ xk +

⎡⎢⎣0.125 0
0.5 0
0 0.125
0 0.5

⎤⎥⎦ uk,

where state xk = [x vx y vy]T denotes x-position, x-velocity, y-
T
position and y-velocity, and control input uk = [ux uy] denotes

https://github.com/Xinyi-Yu/MPM4STL

X. Yu, W. Dong, S. Li et al. Automatica 160 (2024) 111445

a

a
i
t

Φ

w
[

U

o
a
b
r
t

Φ

√
s
n
s
T
S
3
f
s

Fig. 3. Two trajectories for the double integrator system. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

x-acceleration and y-acceleration, respectively. The physical con-
straints are x ∈ X = [0, 10] × [−1.5, 1.5] × [0, 10] × [−1.5, 1.5]
nd u ∈ U = [−1, 1] × [−1, 1].
The objective of the robot is to visit all three regions A1, A2

nd A3 shown in Fig. 3 within time interval between 10 to 40
nstants (i.e., 5 to 20 s) in any order, which can be described by
he following STL formula

:= Φ1 ∧Φ2 ∧Φ3,

here Φ1 := F[10,40](x ∈ [0, 2] ∧ y ∈ [8, 10]), Φ2 := F[10,40](x ∈
8, 10] ∧ y ∈ [8, 10]) and Φ3 := F[10,40](x ∈ [8, 10] ∧ y ∈ [0, 2]).

We consider two trajectories of the robot starting from two
rectangle points up to instant k = 27 and k = 19 (i.e., 13.5 s
and 9.5 s) shown in Fig. 3, respectively, where the feasible sets
X {2,3}27 and X {1,2,3}19 computed offline are also depicted. For the blue
trajectory, at instant k = 12 the first time robot comes to A1, the
remaining index set turns from I = {1, 2, 3} to {2, 3} and then we
use X {2,3}k to monitor. At instant 27, we observe that x27 /∈ X {2,3}27
and the monitor can claim that the robot will never satisfy the
task. Similarly, for the red trajectory, it does not visit any region of
interest before k = 19 and also x19 /∈ X {1,2,3}19 . Then we can claim
in advance that it will not complete the task. Note that the offline
results shown in the figure are the projection to the first and
third dimensions but the set membership is still checked in the
complete 4-dimensional state space (also for later case studies).

7.3. Nonholonomic mobile robot

Consider a nonholonomic mobile robots modeled by kinematic
unicycles (Yu & Su, 2023) in the form of

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω,

and we discretize it with sampling time 0.5 s where state xk =
[x y θ]T denotes x-position, y-position and angle, and control in-
put uk = [v ω]

T denotes speed and angular velocity, respectively.
The physical constraints are x ∈ X = [0, 100] × [0, 100] × [− π

2 ,
π
2] and u ∈ U = [−10, 10] × [−0.3, 0.3] if k ≤ 10 and
= [−3, 3] × [−0.3, 0.3] otherwise.
The workspace of the mobile robot is shown in Fig. 4. The

bjective is to first visit regions A1 or A2 (green) with a specific
ngle before instant 8 (i.e., 4 s) and then to stay in A3 (green)
etween instants 10 and 15 (i.e., 5 s and 7.5 s). Meanwhile, the
obot should always avoid the obstacles (gray) in the map. The
ask can be described by the following STL formula

:= Φ ∧Φ ∧Φ ,
1 2 3

10
Fig. 4. Two trajectories for the nonholonomic mobile robot. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

where Φ1 := G[0,15](y < x + 85 ∧ y > −x + 15 ∧ y <

−x + 185 ∧ y > x − 85 ∧ ¬(x ∈ [40, 50] ∧ y ∈ [42.5, 47.5])),
Φ2 := F[0,8]((x ∈ [15, 30]∧y ∈ [20, 35]∧θ ∈ [−1.4,−0.2])∨ (x ∈
[15, 30]∧y ∈ [65, 80]∧θ ∈ [−1.4,−0.2])) and Φ3 := G[10,15](x ∈
[60, 100] ∧ y ∈ [25, 75]).

We consider two trajectories of the robot starting from two
rectangle points up to k = 5 in blue and up to k = 13 in red as
shown in Fig. 4, respectively. The monitor can claim that the blue
trajectory will violate the task at k = 5 since xblue5 /∈ X {1,2,3}5 . Also,
we can claim that red trajectory will satisfy the specification for
sure at k = 13 since xred13 ∈ Y {1,3}13 .

7.4. Spacecraft rendezvous

Finally, we consider a spacecraft rendezvous example adopted
from Chan and Mitra (2017). The model is the so-called Hill’s
relative coordinate frame centered on the target spacecraft, and
the following nonlinear dynamic equations describe the two-
dimensional, planar motion of chaser spacecraft on an orbital
plane towards a target spacecraft

ẋ = vx,
ẏ = vy,

v̇x = n2x+ 2nvy +
µ

r2
−
µ

r3c
(r + x)+

ux

mc
,

v̇y = n2y− 2nvx −
µ

r3c
y+

uy

mc
,

where state is xk = [x y vx vy]
T , control input is chaser’s

thrusters uk = [ux uy]
T and we discretize the model with sam-

pling time 0.5 min. The parameters are µ = 3.986 × 1014
×

602
[m3/min2

], r = 42164 × 103
[m],mc = 500 [kg], n =

µ

r3
and rc =

√
(r + x)2 + y2. When the target and the chaser

pacecrafts’ separation distance is less than 100 m, the chaser
eeds to continue to rendezvous and be docked to the target
pacecraft with specific angle of approach and closing velocity.
herefore, we focus on monitoring this critical rendezvous period.
pecifically, the x-velocity and y-velocity should be less than
.5 [m/min] and the thrusters cannot provide more than 10 N of
orce in any single direction in this period, i.e., the physical con-
traints are x ∈ X = [−100, 0] × [−100, 0] × [0, 3.5] × [0, 3.5]
and u ∈ U = [0, 10] × [0, 10].

In terms of the temporal logic task, we require that the chaser
will arrive a closer place to the target with a lower speed in 60
instants (i.e., 30 min), i.e., P = {(x, y, v , v) | x ∈ [−5, 0] ∧ y ∈
x y

X. Yu, W. Dong, S. Li et al. Automatica 160 (2024) 111445

[

x
i
f

Φ

w

a
F
a
x

A

B

B

B

B

B

B

B

B

B

B

C

D

D

D

D

D

E

E

F

F

F

G

G

H

H

J

Fig. 5. One possible signal for spacecraft rendezvous case.

−5, 0] ∧ vx ∈ [0, 2.5] ∧ vy ∈ [0, 2.5]}, and once in P , we
can use high precision camera with more state information to
monitor, not just position and velocity. Also, the chaser must
always remain with a line-of-sight cone L = {(x, y) | (y ≥
tan(30◦))∧ (−y ≥ x tan(30◦))} to keep a good position for dock-
ng preparation. Such a task can be described by the following
ormula

:= Φ1 ∧Φ2,

here Φ1 := F[0,60](xk ∈ P) and Φ2 := G[0,60]((x, y) ∈ L).
Considering a trajectory of a spacecraft starting from a rect-

ngle points up to k = 19 instants (i.e., 9.5 min) as shown in
ig. 5, the monitor can make sure that the spacecraft will not be
ble to reach the area that the camera can monitor on time since
19 /∈ X {1,2}19 . This will provide engineers more time to reschedule
the subsequent mission.

8. Conclusion

In this paper, we proposed a new model-based approach for
online monitoring of tasks described by signal temporal logic
formulae called model predictive monitoring, where we assume
the underlying system model is known. Our algorithm consists
of both offline pre-computation and online monitoring. Most
of the computation efforts are made for the pre-computation
characterized by the notion of feasible and satisfiable sets. The
pre-computation information is used during the online moni-
toring to provide evaluations in real-time. We showed that the
proposed method can evaluate the violation and satisfaction ear-
lier than existing model-free approaches. Simulation results were
provided to illustrate our results. Note that, in this work, we
only consider the STL formula in the form of conjunction of sub-
formulae in which the temporal operator will only be applied
once for Boolean formulae. In the future, we would like to con-
sider more general formula, including nested temporal operators,
to further generalize our results. Also, we would like to extend
our approach to the quantitative setting by taking robustness
degrees into account.

Acknowledgment

The authors would like to thank Christian Schilling at Aal-
borg University and Marcelo Forets at Unversidad Tecnológica del
Uruguay, two of main contributors of JuliaReach, for their great

helps when completing our case studies.

11
References

Abate, M., Feron, E., & Coogan, S. (2019). Monitor-based runtime assurance for
temporal logic specifications. In IEEE conference on decision and control (pp.
1997–2002).

bbas, H., & Bonakdarpour, B. (2022). Leveraging system dynamics in runtime
verification of cyber-physical systems. In Leveraging applications of formal
methods, verification and validation. verification principles: 11th international
symposium, ISoLA 2022, Rhodes, Greece, October 22–30, 2022, proceedings, Vol.
Part I (pp. 264–278). Springer.

ae, K., & Lee, J. (2019). Bounded model checking of signal temporal logic
properties using syntactic separation. Proceedings of the ACM on Programming
Languages, 3(POPL), 1–30.

artocci, E., Deshmukh, J., Donzé, A., Fainekos, G., Maler, O., Ničković, D., et al.
(2018). Specification-based monitoring of cyber-physical systems: a survey
on theory, tools and applications. In Lectures on runtime verification (pp.
135–175).

auer, A., Leucker, M., & Schallhart, C. (2011). Runtime verification for LTL and
TLTL. ACM Transactions on Software Engineering and Methodology, 20(4), 1–64.

enet, L., Forets, M., Sanders, D., & Schilling, C. (2019). TaylorModels. jl: Taylor
models in julia and their application to validated solutions of ODEs. In SWIM.

ezanson, J., Edelman, A., Karpinski, S., & Shah, V. (2017). Julia: A fresh approach
to numerical computing. SIAM Review, 59(1), 65–98.

lanchini, F. (1994). Ultimate boundedness control for uncertain discrete-time
systems via set-induced Lyapunov functions. IEEE Transactions on Automatic
Control, 39(2), 428–433.

ogomolov, S., Forets, M., Frehse, G., Potomkin, K., & Schilling, C. (2019). Ju-
liaReach: a toolbox for set-based reachability. In ACM international conference
on hybrid systems: computation and control (pp. 39–44).

onnah, E., & Hoque, K. (2022). Runtime monitoring of time window temporal
logic. IEEE Robotics and Automation Letters, 7(3), 5888–5895.

ravo, J., Limón, D., Alamo, T., & Camacho, E. (2005). On the computation
of invariant sets for constrained nonlinear systems: An interval arithmetic
approach. Automatica, 41(9), 1583–1589.

uyukkocak, A., Aksaray, D., & Yazıcıoğlu, Y. (2022). Control barrier functions
with actuation constraints under signal temporal logic specifications. In
European control conference (pp. 162–168). IEEE.

han, N., & Mitra, S. (2017). Verifying safety of an autonomous spacecraft
rendezvous mission. EPiC Series in Computing, 48, 20–32.

eshmukh, J., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., & Seshia, S. (2017). Robust
online monitoring of signal temporal logic. Formal Methods in System Design,
51(1), 5–30.

evonport, A., & Arcak, M. (2020). Data-driven reachable set computation
using adaptive Gaussian process classification and Monte Carlo methods. In
American control conference (pp. 2629–2634). IEEE.

okhanchi, A., Hoxha, B., & Fainekos, G. (2014). On-line monitoring for temporal
logic robustness. In International conference on runtime verification (pp.
231–246). Springer.

onzé, A., Ferrere, T., & Maler, O. (2013). Efficient robust monitoring for STL. In
International conference on computer aided verification (pp. 264–279).

onzé, A., & Maler, O. (2010). Robust satisfaction of temporal logic over real-
valued signals. In International conference on formal modeling and analysis of
timed systems (pp. 92–106). Springer.

isner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., & Campenhout, D.
(2003). Reasoning with temporal logic on truncated paths. In International
conference on computer aided verification (pp. 27–39).

vtushenko, Y., Posypkin, M., Rybak, L., & Turkin, A. (2018). Approximating
a solution set of nonlinear inequalities. Journal of Global Optimization, 71,
129–145.

ainekos, G., & Pappas, G. (2009). Robustness of temporal logic specifications for
continuous-time signals. Theoretical Computer Science, 410(42), 4262–4291.

errando, A., Cardoso, R., Farrell, M., Luckcuck, M., Papacchini, F., Fisher, M., et al.
(2022). Bridging the gap between single-and multi-model predictive runtime
verification. Formal Methods in System Design, 1–33.

orets, M., & Schilling, C. (2021). LazySets.jl: Scalable Symbolic-Numeric Set
Computations. Proceedings of the JuliaCon Conferences, 1(1), 11.

hosh, B., & André, É. (2022). Offline and online monitoring of scattered
uncertain logs using uncertain linear dynamical systems. In International
Conference on Formal Techniques for Distributed Objects, Components, and
Systems (pp. 67–87). Springer.

ilpin, Y., Kurtz, V., & Lin, H. (2020). A smooth robustness measure of signal
temporal logic for symbolic control. IEEE Control Systems Letters, 5(1),
241–246.

ashimoto, W., Hashimoto, K., & Takai, S. (2022). STL2vec: Signal temporal
logic embeddings for control synthesis with recurrent neural networks. IEEE
Robotics and Automation Letters.

o, H., Ouaknine, J., & Worrell, J. (2014). Online monitoring of metric temporal
logic. In International conference on runtime verification (pp. 178–192).

agtap, P., Soudjani, S., & Zamani, M. (2020). Formal synthesis of stochastic sys-
tems via control barrier certificates. IEEE Transactions on Automatic Control,
66(7), 3097–3110.

http://refhub.elsevier.com/S0005-1098(23)00612-X/sb1
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb1
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb1
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb1
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb1
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb2
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb2
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb2
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb2
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb2
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb2
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb2
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb2
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb2
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb3
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb3
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb3
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb3
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb3
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb4
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb4
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb4
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb4
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb4
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb4
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb4
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb5
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb5
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb5
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb6
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb6
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb6
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb7
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb7
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb7
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb8
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb8
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb8
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb8
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb8
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb9
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb9
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb9
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb9
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb9
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb10
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb10
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb10
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb11
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb11
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb11
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb11
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb11
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb12
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb12
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb12
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb12
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb12
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb13
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb13
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb13
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb14
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb14
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb14
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb14
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb14
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb15
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb15
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb15
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb15
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb15
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb16
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb16
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb16
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb16
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb16
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb17
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb17
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb17
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb18
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb18
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb18
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb18
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb18
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb19
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb19
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb19
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb19
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb19
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb20
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb20
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb20
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb20
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb20
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb21
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb21
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb21
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb22
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb22
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb22
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb22
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb22
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb23
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb23
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb23
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb24
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb24
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb24
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb24
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb24
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb24
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb24
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb25
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb25
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb25
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb25
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb25
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb26
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb26
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb26
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb26
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb26
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb27
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb27
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb27
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb28
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb28
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb28
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb28
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb28

X. Yu, W. Dong, S. Li et al. Automatica 160 (2024) 111445

J

K

L

L

L

akšić, S., Bartocci, E., Grosu, R., Nguyen, T., & Ničković, D. (2018). Quantitative
monitoring of STL with edit distance. Formal Methods in System Design, 53(1),
83–112.

errigan, E. (2001). Robust constraint satisfaction: Invariant sets and predictive
control (Ph.D. thesis), University of Cambridge.

ee, J., Yu, G., & Bae, K. (2021). Efficient SMT-based model checking for signal
temporal logic. In 2021 36th IEEE/ACM international conference on automated
software engineering (ASE) (pp. 343–354). IEEE.

eucker, M. (2012). Sliding between model checking and runtime verification. In
International conference on runtime verification (pp. 82–87). Springer.

indemann, L., & Dimarogonas, D. (2017). Robust motion planning employing
signal temporal logic. In American control conference (pp. 2950–2955). IEEE.

Lindemann, L., & Dimarogonas, D. (2018). Control barrier functions for signal
temporal logic tasks. IEEE Control Systems Letters, 3(1), 96–101.

Lindemann, L., & Dimarogonas, D. (2019). Robust control for signal temporal
logic specifications using discrete average space robustness. Automatica, 101,
377–387.

Lindemann, L., Qin, X., Deshmukh, J., & Pappas, G. (2023). Conformal predic-
tion for STL runtime verification. In ACM/IEEE International Conference on
Cyber-Physical Systems (pp. 142–153).

Ma, M., Bartocci, E., Lifland, E., Stankovic, J., & Feng, L. (2021). A novel spatial–
temporal specification-based monitoring system for smart cities. IEEE Internet
of Things Journal, 8(15), 11793–11806.

Ma, M., Stankovic, J., Bartocci, E., & Feng, L. (2021). Predictive monitoring with
logic-calibrated uncertainty for cyber-physical systems. ACM Transactions on
Embedded Computing Systems, 20(5s), 1–25.

Maler, O., & Nickovic, D. (2004). Monitoring temporal properties of continuous
signals. In Formal techniques, modelling and analysis of timed and fault-tolerant
systems (pp. 152–166).

Mascle, C., Neider, D., Schwenger, M., Tabuada, P., Weinert, A., & Zimmer-
mann, M. (2020). From LTL to rLTL monitoring: Improved monitorability
through robust semantics. In International conference on hybrid systems:
computation and control (pp. 1–12).

Mayne, D. (2001). Control of constrained dynamic systems. European Journal of
Control, 7(2–3), 87–99.

Mitchell, I., & Tomlin, C. (2003). Overapproximating reachable sets by
Hamilton-Jacobi projections. Journal of Scientific Computing, 19, 323–346.

Momtaz, A., Basnet, N., Abbas, H., & Bonakdarpour, B. (2021). Predicate mon-
itoring in distributed cyber-physical systems. In International conference on
runtime verification (pp. 3–22). Springer.

Pinisetty, S., Jéron, T., Tripakis, S., Falcone, Y., Marchand, H., & Preoteasa, V.
(2017). Predictive runtime verification of timed properties. Journal of Systems
and Software, 132, 353–365.

Qin, X., & Deshmukh, J. (2020). Clairvoyant monitoring for signal temporal logic.
In International conference on formal modeling and analysis of timed systems
(pp. 178–195). Springer.

Raman, V., Donzé, A., Maasoumy, M., Murray, R., Sangiovanni-Vincentelli, A.,
& Seshia, S. (2014). Model predictive control with signal temporal logic
specifications. In IEEE conference on decision and control (pp. 81–87).

Roehm, H., Oehlerking, J., Heinz, T., & Althoff, M. (2016). STL model checking
of continuous and hybrid systems. In Automated technology for verification
and analysis: 14th international symposium, ATVA 2016, Chiba, Japan, October
17-20, 2016, proceedings, Vol. 14 (pp. 412–427). Springer.

Sahin, Y., Quirynen, R., & Di Cairano, S. (2020). Autonomous vehicle decision-
making and monitoring based on signal temporal logic and mixed-integer
programming. In American control conference (pp. 454–459). IEEE.

Salamati, A., Soudjani, S., & Zamani, M. (2021). Data-driven verification of
stochastic linear systems with signal temporal logic constraints. Automatica,
131, Article 109781.

Stipanović, D., Hwang, I., & Tomlin, C. (2003). Computation of an over-
approximation of the backward reachable set using subsystem level set
functions. In 2003 European control conference (ECC) (pp. 300–305). IEEE.

Thati, P., & Roşu, G. (2005). Monitoring algorithms for metric temporal logic
specifications. Electronic Notes in Theoretical Computer Science, 113, 145–162.

Waga, M., André, É., & Hasuo, I. (2021). Model-bounded monitoring of hybrid
systems. In ACM/IEEE international conference on cyber-physical systems (pp.
21–32).

Yoon, H., & Sankaranarayanan, S. (2021). Predictive runtime monitoring for mo-
bile robots using logic-based Bayesian intent inference. In IEEE international
conference on robotics and automation (pp. 8565–8571). IEEE.
12
Yu, X., Dong, W., Yin, X., & Li, S. (2022). Online monitoring of dynamic systems
for signal temporal logic specifications with model information. In IEEE
conference on decision and control (pp. 1553–1559). IEEE.

Yu, G., Lee, J., & Bae, K. (2022). STLmc: Robust STL model checking of hybrid
systems using SMT. In Computer aided verification: 34th international confer-
ence, CAV 2022, Haifa, Israel, August 7–10, 2022, proceedings, Vol. Part I (pp.
524–537). Springer.

Yu, X., & Su, R. (2023). Decentralized circular formation control of nonholonomic
mobile robots under a directed sensor graph. IEEE Transactions on Automatic
Control, 68(6), 3656–3663.

Zhang, X., Leucker, M., & Dong, W. (2012). Runtime verification with predictive
semantics. In NASA formal methods symposium (pp. 418–432). Springer.

Zhao, D., Zhou, Z., Cai, Z., Yangui, S., & Xue, X. (2022). ASTL: Accumulative STL
with a novel robustness metric for IoT service monitoring. IEEE Transactions
on Mobile Computing.

Xinyi Yu was born in Jiangsu, China, in 1999. She
received the B.Eng degree from China University of
Petroleum (East China) in Qingdao in 2020, and the
M.S. degree from Shanghai Jiao Tong University in
Shanghai in 2023, both in automation. She is pursuing
the Ph.D. degree in computer science at University
of Southern California. Her research interests include
formal methods and safety control.

Weijie Dong was born in Xinjiang, China, in 1996.
He received the B.S. degree from Huazhong University
of Science and Technology in 2019. He is pursuing
the Ph.D. degree at Shanghai Jiao Tong University in
the Department of Automation. His current research
interests include fault diagnosis, state estimation of
discrete event systems.

Shaoyuan Li was born in Hebei, China, in 1965. He
received the B.S. and M.S. degrees in automation from
the Hebei University of Technology, Tianjin, China, in
1987 and 1992, respectively, and the Ph.D. degree
from Nankai University, Tianjin, in 1997. Since 1997,
he has been with the Department of Automation,
Shanghai Jiao Tong University, Shanghai, China, where
he is currently a chair Professor. His current research
interests include model predictive control, dynamic
system optimization, and cyber–physical systems. He
is the vice-president of the Chinese Association of

Automation.

Xiang Yin was born in Anhui, China, in 1991. He
received the B.Eng degree from Zhejiang University in
2012, the M.S. degree from the University of Michigan,
Ann Arbor, in 2013, and the Ph.D degree from the
University of Michigan, Ann Arbor, in 2017, all in
electrical engineering. Since 2017, he has been with
the Department of Automation, Shanghai Jiao Tong
University, where he is an Associate Professor. His
research interests include formal methods, discrete
event systems and cyber–physical systems. Dr. Yin is
serving as the chair of the IEEE CSS Technical Committee

on Discrete Event Systems, Associate Editors for the Journal of Discrete Event
Dynamic Systems: Theory & Applications, the IEEE Control Systems Letters, the IEEE
Transactions on Intelligent Vehicles, and a member of the IEEE CSS Conference
Editorial Board. Dr. Yin received the IEEE Conference on Decision and Control
(CDC) Best Student Paper Award Finalist in 2016.

http://refhub.elsevier.com/S0005-1098(23)00612-X/sb29
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb29
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb29
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb29
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb29
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb30
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb30
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb30
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb31
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb31
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb31
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb31
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb31
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb32
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb32
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb32
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb33
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb33
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb33
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb34
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb34
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb34
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb35
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb35
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb35
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb35
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb35
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb36
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb36
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb36
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb36
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb36
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb37
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb37
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb37
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb37
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb37
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb38
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb38
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb38
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb38
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb38
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb39
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb39
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb39
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb39
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb39
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb40
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb40
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb40
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb40
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb40
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb40
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb40
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb41
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb41
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb41
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb42
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb42
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb42
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb43
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb43
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb43
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb43
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb43
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb44
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb44
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb44
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb44
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb44
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb45
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb45
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb45
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb45
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb45
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb46
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb46
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb46
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb46
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb46
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb47
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb47
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb47
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb47
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb47
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb47
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb47
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb48
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb48
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb48
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb48
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb48
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb49
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb49
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb49
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb49
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb49
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb50
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb50
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb50
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb50
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb50
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb51
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb51
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb51
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb52
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb52
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb52
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb52
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb52
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb53
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb53
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb53
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb53
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb53
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb54
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb54
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb54
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb54
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb54
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb55
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb55
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb55
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb55
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb55
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb55
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb55
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb56
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb56
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb56
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb56
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb56
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb57
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb57
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb57
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb58
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb58
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb58
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb58
http://refhub.elsevier.com/S0005-1098(23)00612-X/sb58

	Model predictive monitoring of dynamical systems for signal temporal logic specifications
	Introduction
	Background
	Our Contributions
	Related Works
	Organization

	Preliminary
	System Model
	Signal Temporal Logic

	Problem Formulation
	Fragment of STL Formulae
	Online Monitoring of STL

	Set-Based Online Monitoring
	Remaining Formulae and Feasible Set
	Online Monitoring Algorithm

	Pre-Computations of Feasible Sets
	Computation List
	Backwards Computation of Feasible Regions
	Offline Computation Algorithm
	Numerical Computation Considerations

	Extension to the Case of Satisfied Prefixes
	Case Studies for Online Monitoring
	Building Temperature Control
	Double Integrator
	Nonholonomic Mobile Robot
	Spacecraft Rendezvous

	Conclusion
	Acknowledgment
	References

