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A B S T R A C T

This paper investigates the coordination of multiple agents for high-level tasks described by linear temporal
logics (LTL). The general purpose for multi-agent coordination is to synthesize a plan such that the LTL task
is achieved optimally. In addition to the standard requirement on the correctness of the plan, we further
investigate the potential information leakage of each agent during the operating process. Specifically, we
consider the scenario where the behavior of each individual agent is partially monitored by a passive intruder
modeled as an outside observer or an eavesdropper. The security constraint requires that the intruder can never
identify for sure that some specific individual agent is carrying out some sub-tasks of significant importance. To
this end, we model the mobile capability of the agent team by a global labeled transition system. To describe
information-flow security constraint, motivated by the generic notion of opacity, two different types security
requirements are proposed for each individual agent. An effective coordination algorithm is proposed that
synthesizes an optimal global plan for the entire agent team such that the global LTL task can be achieved,
while the security of each individual agent is preserved. The proposed framework is implemented in real-world
experiment and is also demonstrated by several case studies.
. Introduction

.1. Background and motivation

Tasks planning are the keys towards the collaborations and co-
rdination of multi-agent teams. Previous researches on multi-agent
oordination mainly focus on low-level tasks such as collision avoid-
nce and point-to-point navigation (Karaman & Frazzoli, 2011; LaValle,
006). Recent years, temporal logics, such as linear temporal logics
LTL) and computation tree logics (CTL) have drawn considerable
ttention in the agent planning literature due to their rich capabilities
n describing complex high-level planning objectives such as liveness,
afety and surveillance (Basile, Chiacchio, & Di Marino, 2019; Fanti,
angini, Pedroncelli, & Ukovich, 2018; Kress-Gazit, Lahijanian, & Ra-
an, 2018). By abstracting the motion capabilities of autonomous

gents to the discrete domain, automata-theoretic approaches can be
sed to effectively synthesize high-level plans such that the temporal
ogic task specifications can be fulfilled. Such high-level plans can
e then implemented by low-level hybrid controllers to control the
hysical dynamic of the system, which provides a fully-automated and
orrect-by-construction formal planning framework.

✩ This work was supported by the National Key Research and Development Program of China (2018AAA0101700) and the National Natural Science Foundation
f China (62061136004, 62173226, 61833012) and Shanghai Jiao Tong University Scientific and Technological Innovation Funds, China.
∗ Corresponding author at: Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China.
E-mail addresses: yuxinyi-12@sjtu.edu.cn (X. Yu), yinxiang@sjtu.edu.cn (X. Yin), syli@sjtu.edu.cn (S. Li), lizhaoj1@egr.msu.edu (Z. Li).

In order to achieve complex global tasks, each agent in the team
may need to communicate with each other via networks, e.g., to share
its local information, or may need to acquire/transmit information
from/to a third party, e.g., to download/upload data. However, mali-
cious cyber-attacks may be performed on the communication networks
such that some critical information of the system can be leaked, which
will threaten the security and privacy of each agent. Roughly speaking,
cyber-attacks can be classified into active attacks and passive attacks.
For active attacks, the intruder can actively disrupt the communica-
tion channels between each agent. This includes, e.g., denial-of-service
attacks and deception attacks; the interested reader is referred to
the comprehensive (Ding, Han, Ge, & Wang, 2020) for more recent
developments on this topic. In this paper, we consider the case of
passive attacks. Specifically a passive intruder will not affect the system
directly. Instead, it will passively observe some information output
from the system for the purpose of inferring and reasoning about the
behavior of the system.

Taking manufacturing factory as a motivating example, let us con-
sider a working scenario where a team of agents want to assemble a
machine collaboratively as shown in Fig. 1. In particular, one agent
ttps://doi.org/10.1016/j.conengprac.2022.105130
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Fig. 1. Illustration of problem background.

n the team needs to go to the secure station in red base to get
he blueprint and the other agents need to collect different pieces of
omponents and transfer them to each corresponding places. At the
ame time, some collective behavior and communication information
f the agent team may be partially observed by an outsider, e.g., via
sing some additional sensors or eavesdropping communications. In
his case, which agent is carrying out the blueprint becomes a very
ensitive secure information of the entire system. If the outsider is
ble to figure out this information by its information available, then
otential malicious attack might be performed on the specific agent
argeted.

Therefore, security and privacy issues have been becoming impor-
ant concerns in agent networks and security constraints also need to be
onsidered in the task planning and coordinating algorithm. Essentially,
his requires the designer to achieve a tradeoff between the utility of the

system in terms of the LTL task and the security of the system in terms
f its generated information-flow. This paper works along this line of
esearch by developing security-preserving task planning algorithms for
utonomous multi-agent systems.

.2. Related works

High-level task planning for mobile agents using formal methods
as drawn considerable attention in the literature; see, e.g., Kloetzer
nd Belta (2009), Kress-Gazit, Fainekos, and Pappas (2009), Plaku and
araman (2016). In the context of task coordination for multi-agent
ystems, following the sensor-based framework proposed in Kress-Gazit
t al. (2009), Raman and Kress-Gazit (2014) proposes an approach
or synthesizing reactive controllers of a team of agents. In Ulusoy,
mith, Ding, Belta, and Rus (2013), the authors consider the optimal
ath planning problem under temporal logic constraints. In Cai, Peng,
i, and Kan (2020), Kantaros, Malencia, Kumar, and Pappas (2020),
TL task planning under partially unknown environment has also been
nvestigated. In order to mitigate the computational complexity in
ulti-agent planning, efficient planning algorithms have also been
roposed, see, e.g., distributed approach (Guo & Dimarogonas, 2015;
oarref & Kress-Gazit, 2020), sampling-based approach (Kantaros &

avlanos, 2020; Oh, Cho, Choi, & Oh, 2020) and Petri nets-based
pproach (Kloetzer & Mahulea, 2020; Mahulea & Kloetzer, 2017). Other
ypes of formal methods such as the supervisory control of discrete-
vent systems have also been applied to multi-agent system for the
urpose of ensuring high-level specifications (Goryca & Hill, 2013;
ill & Lafortune, 2017; Mahulea, Kloetzer, & González, 2020) and
as been successfully applied to, e.g., warehouse systems (Tatsumoto,
hiraishi, Cai, & Lin, 2018) and agricultural field agents (Ju & Son,
019). However, above mentioned works only focus on the correctness
f high-level behaviors; security issues during the coordination are not
onsidered.

More recently, some researchers have started to investigate how
o preserve information-flow security in the agent task planning prob-
em; see, e.g., Hadjicostis (2018), Ma and Cai (2021), O’Kane and
hell (2015), Saboori and Hadjicostis (2011), Wang, Nalluri, and Pa-

ic (2020), Yang, Yin, Li, and Zamani (2020). In Hadjicostis (2018),

2

Saboori and Hadjicostis (2011), the notion of opacity is adopted to
characterize the information-flow security requirement of the system
and the planning task is described as a reachability problem. In our
recent work, we further consider a general class of LTL tasks under the
opacity constraint. Efficient algorithms without building the observer
structure are proposed. In O’Kane and Shell (2015), the authors address
the problem of designing information transmission policies for agents
subject to discreetness constraints. It is shown in Wang et al. (2020)
certain types of security constraints in the planning problem can be
encoded as HyperLTL specifications. These works are closely related
to our setting as the security requirements are all motivated from the
general notion of opacity (Ji, Yin, & Lafortune, 2019; Lafortune, Lin, &
Hadjicostis, 2018; Lin, 2011; Tong, Li, Seatzu, & Giua, 2018). However,
the above mentioned works only consider the security issue in a single
overall agent system. Here, we focus on the multi-agent scenario where
the security and privacy for each individual agent in the team are
considered. Such a scenario is much more sophisticated and different
types of security customized to the multi-agent setting are proposed to
capture different security requirements.

In summary, existing works on multi-agent high-level coordination
mainly focus on the correctness of the tasks; the information-flow
security issue has not been considered. For secure-aware task planning,
existing notions of security as well as the corresponding planning
algorithms are only suitable for single-agent systems. How to coordi-
nate multi-agent systems for high-level specifications while preserving
security is still a challenging problem that has not yet been fully solved.
The main difficulty in this problem is how to define security notions
that are suitable for multi-agent systems and how to compute the
optimal strategies that preserve security. These issues will be tackled
in this work.

1.3. Our contributions

Motivated by the security and privacy concerns in multi-agent
systems, in this paper, we formulate and solve a security-aware path
planning problem for complex temporal logic tasks. Following the
standard framework, we consider a multi-agent system whose motion
capability is modeled as a global labeled transition system, which is the
composition of each individual agent. Agents need to collaboratively
achieve a global task specified by an LTL formula. We consider a
passive intruder monitoring the system’s behavior via a generic obser-
vation mapping. Our goal is to generate a plan for the agent team such
that the LTL task is achieved with the least cost while some secure
information of each individual agent is preserved against the outside
observer. To formal capture the information-flow security issue for each
individual agent during the entire task cooperation, we proposed two
new security requirements. Specifically, we use a particular set of states
to model the secret behavior of each individual agent. Our goal is to
make sure that the intruder can never determine for sure that a specific
agent has visited secret locations, which is referred to as the Type I
security, or cannot uniquely suspect any specific agent for executing
the secret behavior, which is referred to as the Type II security.

Since the system is partially observed by the intruder, standard
methodologies for handling this type of problem require the subset
construction to track consistent information. However, this yields com-
putational issues as the subset construction results in an exponentially
state–space in the size of the global systems. Our main approach
is based on a computationally efficient procedure by constructing a
new structure called the multiple-labeling-GTS, which synchronizes the
entire system with its several copy patterns based on the observation
from the intruder: half copy patterns for Type I security and a half
for Type II security. By performing shortest path searches over the
product of the multiple-labeling-GTS and the Büchi automaton char-
acterizing the LTL specification, an optimal plan that is both secure
and specification achieving is synthesized. We show that the proposed
security-preserving planning algorithm is both sound and complete.
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Table 1
Main symbols and definitions.

Symbol Definition

 Index set of agents
𝑘 Total number of agents
𝛱 Set of all regions in the workshop
 Set of atomic propositions
𝑇𝑖 Transition system for agent 𝑖 ∈ 
𝑇𝑔 Transition system for global system
𝜏𝑔 Infinite path in 𝑇𝑔
𝑡𝑟𝑎𝑐𝑒(𝜏𝑔 ) Trace of infinite path 𝜏𝑔
𝑃𝑎𝑡ℎ𝜔(𝑇𝑔 ) Set of all infinite paths in 𝑇𝑔
𝑃𝑎𝑡ℎ∗(𝑇𝑔 ) Set of all finite paths in 𝑇𝑔
𝐽 (𝜏𝑔 ) Cost of finite path 𝜏𝑔
𝜑 LTL formula
𝐴𝜑 Nondeterministic Büchi automaton for 𝜑
𝐻 Output function
𝑌 Set of output symbols
𝛱𝑠 Set of secret states
𝛱𝑛𝑠 Set of non-secret states
𝐽 (𝜏𝑔 ) Total cost of an infinite path 𝜏𝑔
�̃�𝑔 Labeling-GTS
𝑉 Multiple-labeling-GTS
𝑇⊗ Product system
𝐺𝑜𝑎𝑙(𝑇⊗) Set of all accepting states
𝑆(𝑇⊗) Set of all secure accepting states

1.4. Organization

The rest of the paper is organized as follows. The main symbols and
definitions are summarized in Table 1. The system model is described
in Section 2 and we present the privacy requirements and formulate
the problem in Section 3. Section 4 focuses on the solution algorithm
of the problem and Section 5 discusses the correctness and complexity
of the proposed algorithm. The overall framework is demonstrated by
the simulation and experiment in Section 6 and Section 7 concludes the
whole work.

2. System model

In this section, we introduce the formal model for the mobility of the
multi-agent system as well as the LTL-based complex task requirement.

2.1. Global transition system

We consider a team of 𝑘 heterogeneous agents and denote by  =
{1,… , 𝑘} as the index set of agents. All agents are working in the same
workspace 𝛱 ⊆ R2, which is partitioned as 𝑁 regions 𝛱 = {𝜋1,… , 𝜋𝑁}.
The motion capability of each agent 𝑖 ∈ {1,… , 𝑘} in the workspace
is abstracted as a finite weighted transition system (wTS), which is a
6-tuple

𝑇𝑖 = (𝛱𝑖,𝛱𝑖,0,→𝑖, 𝑤𝑖, 𝑖, 𝐿𝑖),

where 𝛱𝑖 is a finite set of states representing all regions, 𝛱𝑖,0 ⊆ 𝛱𝑖 is
a set of initial states from which the agent may start, →𝑖⊆ 𝛱𝑖 ×𝛱𝑖 is a
transition relation, 𝑤𝑖 ∶ 𝛱𝑖 × 𝛱𝑖 → R+ is a cost function specifying
the moving cost between different regions,  𝑖 is a set of atomic
propositions specifying some important properties of our interest, and
𝐿𝑖 ∶ 𝛱𝑖 → 2 𝑖 is a labeling function that specifying what properties
hold at each region. The readers are referred to Belta, Yordanov, and
Gol (2017), Kloetzer and Belta (2007) for how to construct wTS for
physical systems. In principal, the wTS 𝑇𝑖 is determined by both the
connectivity of the workspace, the motion ability and the mapping
information of the agent 𝑖. Note that 𝑇𝑖 and 𝑇𝑗 may be different even
though they work in the same workspace.

In this work, we assume that all agents are running synchronously,
which can be implemented by using a global clock and each agent needs
to confirm the completion of other agent’s movement before the next
period. Under this setting, the mobility of the entire agent team can be
3

modeled by a global transition system (GTS), denoted by 𝑇𝑔 , which is
the synchronous product of each local agent 𝑇𝑖.

Definition 2.1 (GTS). Given 𝑘 weighted transition systems 𝑇𝑖 =
(𝛱𝑖,𝛱𝑖,0,→𝑖, 𝑤𝑖, 𝑖, 𝐿𝑖), 𝑖 ∈ {1,… , 𝑘}, the global transition system
𝑇𝑔 = 𝑇1 ×⋯ × 𝑇𝑘 is a 6-tuple

𝑇𝑔 = (𝛱𝑔 ,𝛱𝑔,0,→𝑔 , 𝑤𝑔 ,𝑔 , 𝐿𝑔),

where,

• 𝛱𝑔 = 𝛱1 ×⋯ ×𝛱𝑘 is the set of global states;
• 𝛱𝑔,0 = 𝛱1,0 ×⋯ ×𝛱𝑘,0 is the set of initial global states;
• →𝑔⊆ 𝛱𝑔 × 𝛱𝑔 is the transition relation defined by: for any 𝜋𝑔 =
(𝜋1,… , 𝜋𝑘), 𝜋′

𝑔 = (𝜋′1,… , 𝜋′𝑘) ∈ 𝛱𝑔 , we have (𝜋𝑔 , 𝜋′
𝑔) ∈→𝑔 if and

only if (𝜋𝑖, 𝜋′𝑖) ∈→𝑖,∀𝑖 = 1,… , 𝑘;
• 𝑤𝑔 ∶ 𝛱𝑔 × 𝛱𝑔 → R+ is the cost function defined by: for any
𝜋𝑔 = (𝜋1,… , 𝜋𝑘), 𝜋′

𝑔 = (𝜋′1,… , 𝜋′𝑘) ∈ 𝛱𝑔 , we have 𝑤𝑔(𝜋𝑔 , 𝜋′
𝑔) =

𝑤1(𝜋1, 𝜋′1) +⋯ +𝑤𝑘(𝜋𝑘, 𝜋′𝑘);
• 𝑔 = 1 ∪⋯ ∪𝑘 is the set of atomic propositions;
• 𝐿𝑔 ∶ 𝛱𝑔 → 2𝑔 is the labeling function defined by: for any
𝜋𝑔 = (𝜋1,… , 𝜋𝑘) ∈ 𝛱𝑔 , we have 𝐿𝑔(𝜋𝑔) = 𝐿1(𝜋1) ∪⋯ ∪ 𝐿𝑘(𝜋𝑘).

An infinite path 𝜏𝑔 = 𝜏𝑔(0)𝜏𝑔(1)⋯ ∈ 𝛱𝜔
𝑔 in 𝑇𝑔 is an infinite sequence

of states such that 𝜏𝑔(0) ∈ 𝛱𝑔,0 and (𝜏𝑔(𝑗), 𝜏𝑔(𝑗 +1)) ∈→𝑔 , for any 𝑗 ∈ N.
A finite path can be defined accordingly. The trace of an infinite path
𝜏𝑔 denoted by 𝑡𝑟𝑎𝑐𝑒(𝜏𝑔) is an infinite sequence of atomic propositions,
i.e. 𝑡𝑟𝑎𝑐𝑒(𝜏𝑔) = 𝐿𝑔(𝜏𝑔(0))𝐿𝑔(𝜏𝑔(1))⋯ ∈ (2𝑔 )𝜔. Recall that each state in
𝛱𝑔 is a 𝑘-tuple and we denote by 𝜏 𝑖𝑔 the path of agent 𝑖 ∈ {1,… , 𝑘}
in global path 𝜏𝑔 , i.e., 𝜏𝑖𝑔 = 𝜏 𝑖𝑔(0)𝜏

𝑖
𝑔(1)⋯ ∈ 𝛱𝜔

𝑖 , where 𝜏𝑖𝑔(𝑗) is the 𝑖th
component in 𝜏𝑔(𝑗). We denote by 𝑃𝑎𝑡ℎ𝜔(𝑇𝑔) and 𝑃𝑎𝑡ℎ∗(𝑇𝑔) the set of all
infinite and finite paths in 𝑇𝑔 respectively. Considering the cost function
𝑤𝑔 in 𝑇𝑔 , the cost of a finite path 𝜏𝑔 ∈ 𝑃𝑎𝑡ℎ∗(𝑇𝑔) denoted by 𝐽 (𝜏𝑔) is
defined as:

𝐽 (𝜏𝑔) =
|𝜏𝑔 |−2
∑

𝑗=0
𝑤𝑔(𝜏𝑔(𝑗), 𝜏𝑔(𝑗 + 1)), (1)

where |𝜏𝑔| is the length of the path 𝜏𝑔 . In words, it captures the total
cost incurred by all agents during the execution of 𝜏𝑔 .

2.2. Task specification

In multi-agent system, agents need to work collaboratively to achieve
a global task specification. In this paper, we consider high-level tasks
described by Linear Temporal Logic (LTL) formulas. Specifically, an LTL
formula consists of a set of atomic propositions  and several Boolean
and temporal operators, which is formed according to the following
syntax:

𝜑 ∶∶= 𝑇 𝑟𝑢𝑒 ∣ 𝑎 ∣ 𝜑1 ∧ 𝜑2 ∣ ¬𝜑 ∣ 𝑋𝜑 ∣ 𝜑1𝑈𝜑2,

where 𝑎 ∈  is an atomic proposition, and 𝑋,𝑈 mean ‘‘next’’ and
‘‘until’’, respectively. The above definitions also induce temporal oper-
ators such as ◊ (‘‘eventually’’), □ (‘‘always’’) and ⇒ (‘‘implication"),
where ◊𝜑 = 𝑇 𝑟𝑢𝑒𝑈𝜑, □𝜑 = ¬◊¬𝜑 and 𝜑1 ⇒ 𝜑2 = ¬𝜑1𝑈𝜑2.

LTL formulae are used to evaluate whether an infinite word satisfies
some properties or not. We denote by 𝑤𝑜𝑟𝑑𝑠(𝜑) = {𝜎 ∈ (2 )𝜔 ∶ 𝜎 ⊧ 𝜑}
the set of all infinite words satisfying LTL formula 𝜑, where ⊧⊆ (2 )𝜔×
𝜑 is the satisfaction relation. The interested reader is referred to Baier
and Katoen (2008) for more details about the syntax and semantics
of LTL, which are omitted here. For any LTL formula 𝜑, there always
exists a corresponding Nondeterministic Büchi Automaton (NBA) over
𝛴 = 2 which is defined as follows and there are many well-studied
fast translation algorithms from an LTL formula to its corresponding
NBA; see, e.g., Gastin and Oddoux (2001).
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Definition 2.2 (NBA). A nondeterministic Büchi automaton 𝐴 is a 5-
tuple, 𝐴 = (𝑄,𝑄0, 𝛴, 𝛿, ) where 𝑄 is a finite set of states; 𝑄0 ⊆ 𝑄 is
a set of initial states; 𝛴 is a set of alphabets; 𝛿 ∶ 𝑄 × 𝛴 → 2𝑄 is a
on-deterministic transition function and  is a set of accepting states.

Given an infinite word 𝜎 = 𝑎0𝑎1𝑎2⋯ ∈ 𝛴𝜔, an infinite run 𝑅 of
𝐴 over 𝜎 is an infinite sequence 𝑅 = 𝑞0𝑞1𝑞2⋯ ∈ 𝑄𝜔, where 𝑞0 ∈ 𝑄0,
(𝑞𝑖, 𝑎𝑖) ∈ 𝑞𝑖+1 for any 𝑖 ∈ N. An infinite run 𝑅 is called accepting if
𝑛𝑓 (𝑅) ∩  ≠ ∅, where 𝐼𝑛𝑓 (𝑅) is the set of states that appear in 𝑅
nfinite times. An infinite word 𝜎 is said to be accepted if it induces an
ccepting infinite run. We denote by 𝑤(𝐴) ⊆ 𝛴𝜔 the accepted language
f 𝐴, which is the set of accepting words.

In our problem, we consider an LTL formula 𝜑 over 𝑔 as the
lobal task specification of the multi-agent system. We denote by
𝜑 = (𝑄,𝑄0, 2

𝑔 , 𝛿, ) as the NBA associated with 𝜑, i.e., 𝑤𝑜𝑟𝑑𝑠(𝜑) =
𝑤(𝐴𝜑).

emark 1. In practice, some atomic propositions are common to
everal agents while some are unique to the individual agents. To avoid
onfusion, we add the superscript to distinguish the atomic propositions
f different agents in 𝜑 if necessary. For example, 𝜑 = 𝑎𝑖𝑈𝑏𝑗 means that
roperty 𝑎 should be satisfied by agent 𝑖 until agent 𝑗 completes 𝑏.

. Security requirement and problem formulation

In this section, we describe the observation model of the intruder,
rovide the definition of security and formulate the synthesis problem.

.1. Security constraints

Let 𝑇𝑔 = (𝛱𝑔 ,𝛱𝑔,0,→𝑔 , 𝑤𝑔 ,𝑔 , 𝐿𝑔) be the GTS that models the
otion capability of the entire multi-agent system. As we discussed

arlier, the system may leak information to the outside during its
xecution due to various reasons. Here, we model the information
eakage by a generic output function

∶ 𝛱𝑔 → 𝑌 ,

here 𝑌 is a new set of output symbols. Therefore, after executing any
inite internal path 𝜏𝑔 = 𝜏𝑔(0)𝜏𝑔(1)⋯ 𝜏𝑔(𝑛) ∈ 𝛱∗

𝑔 , the outsider (intruder)
ill observe a finite external path 𝐻(𝜏𝑔) = 𝐻(𝜏𝑔(0))𝐻(𝜏𝑔(1))⋯𝐻(𝜏𝑔(𝑛))
𝑌 ∗.

emark 2. The above observation model is very generic since 𝑌 can
e an arbitrary set of symbols; the specific form depends on how the
utsider is monitoring the system and what information the system
s released to the outsider. This model takes many different practical
ases into consideration. For example, the outsider may have sensors
or specific regions. Therefore, it knows either some specific agent is
ntering this region or knows some agent is entering but cannot distin-
uish which one. Also, in some scenarios, the outsider can ‘‘listen" the
ommunications between each agent or the communications between
ach agent to the central controller. This issue can also be captured
y our model by setting 𝑌 as the communicating events. Then the
utsider may identify the location of some agent if this information is
xchanged. Take the simulation in Sections 6.1 and 6.2 as examples,
he set 𝑌 means the column number of each agent’s location, i.e. the
ntruder can only obtain the column number rather than the complete
oordinate information via the states’ output function.

Here we consider a passive intruder modeled as an outside observer
aving the following capabilities

• it has the full knowledge of the mobility of the agent team. i.e,
the GTS 𝑇𝑔 ; and

• it can observe the external path generated by the system via the

output function, i.e., 𝐻(𝜏𝑔). T

4

owever, it does not know the plan of the agent team or the internal
ath 𝜏𝑔 . In other words, it needs to infer the actual behavior of each
gent using the mobility model and the information-flow observed
nline.

emark 3. Intruders with the above two capabilities are very common
or multi-agent systems. Regarding the first capability, the mobility
f the agent team is essentially the map of the workspace that spec-
fies how each agent can move from one region to another. If the
gents are moving in a public area, then the map of the workspace
s usually the public information which can be obtained easily by the
ntruder. Regarding the second capability, note that here we use the
utput function to model the observation of the intruder. For example,
hen the agents are moving in a building, the intruder may place

ensors or hake cameras at some gates to detect whether or not some
gents have gone to some specific rooms. There are also many other
ractical applications, where the intruders have these two capabilities,
.g., location-based services (Wu, Sankararaman, & Lafortune, 2014)
nd ship information systems (Xing, Dai, & Liu, 2016).

To formulate the security requirement, in this work, we consider
he problem of protecting the identity of the agent who executed some
ehaviors of significant importance that do not want to be discovered
y the intruder. We model such important behaviors by the visit of
ome secret states

𝑠 ⊂ 𝛱.

We also define 𝛱𝑛𝑠 = 𝛱∖𝛱𝑠 as the set of non-secret states. For any path
𝜏 𝑖𝑔 ∈ 𝑃𝑎𝑡ℎ∗(𝑇𝑖) by agent 𝑖 ∈ , we write 𝜏𝑖𝑔 ⇝ 𝛱𝑠 if ∃ 𝑛 ≤ |𝜏𝑖𝑔| − 1 such
that 𝜏 𝑖𝑔(𝑛) ∈ 𝛱𝑠, i.e., agent 𝑖 has visited secret states when executing 𝜏𝑔 .
Similarly, we write 𝜏𝑖𝑔 ↛ 𝛱𝑠 if ∀ 𝑛 ≤ |𝜏 𝑖𝑔|−1 such that 𝜏 𝑖𝑔(𝑛) ∈ 𝛱𝑛𝑠, which
means that all the states in 𝜏 𝑖𝑔 are non-secret. We propose two different
types of security requirements that captures the individual privacy in
terms of the visit of secret states.

Type I Security: a finite path 𝜏𝑔 ∈ 𝑃𝑎𝑡ℎ∗(𝑇𝑔) is said to be secure in
Type I if for any agent 𝑖 ∈ {1,… , 𝑘} such that 𝜏 𝑖𝑔 ⇝ 𝛱𝑠, there exists a
inite path 𝜏′𝑔 ∈ 𝑃𝑎𝑡ℎ∗(𝑇𝑔) such that

(1) 𝐻(𝜏𝑔) = 𝐻(𝜏′𝑔);
(2) 𝜏′𝑖𝑔 ↛ 𝛱𝑠.
The above security requirement says that, for any agent in the team,

f it visited a secret state in the path, then there must exist another
ossible path in which the same agent did not visit a secret state and
hese two paths have to be indistinguishable from the intruder’s point
f view. Otherwise, the intruder will know for sure that some specific
gents (one or more) have visited secret states. In other words, any agent
hat executes behaviors of significant importance should hold plausible
eniability for doing so. Note that, for the case where more than one
gent have visited secret states, their paths for denying the secret may
e different.

The above Type I security only requires that the intruder cannot
dentify for sure that agent 𝑖 has visited secret states. However, the
ntruder may identify that agent 𝑖 is the only possible agent that has visited
he secret states. Then such a scenario will also threaten the security
f the system as the intruder may focus its attention on tracking this
argeted agent possibly with further actions. This leads to the following
efinition of Type II security.

Type II Security: a finite path 𝜏𝑔 ∈ 𝑃𝑎𝑡ℎ∗(𝑇𝑔) is said to be secure
n type II if for any agent 𝑖 ∈ {1,… , 𝑘} such that 𝜏𝑖𝑔 ⇝ 𝛱𝑠, there exists
finite path 𝜏′′𝑔 ∈ 𝑃𝑎𝑡ℎ∗(𝑇𝑔) such that

(1) 𝐻(𝜏𝑔) = 𝐻(𝜏′′𝑔 );
(2) 𝜏′′𝑗𝑔 ⇝ 𝛱𝑠 for some 𝑗 ∈ {1,… , 𝑘}, 𝑗 ≠ 𝑖.
An infinite path 𝜏𝑔 ∈ 𝑃𝑎𝑡ℎ𝜔(𝑇𝑔) is said to be secure if any of its finite

refixes is secure (in type I or type II).
The above two types of security requirements are incomparable in

he sense that none implies the other. Which notion to adopt is rather
pplication dependent. Hereafter, we focus on finding a path that sat-
sfies these two requirements simultaneously. Our methodologies can
e easily modified to handle each single type of security individually.

his issue will be discussed after our synthesis algorithm is presented.
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3.2. Problem formulation

As we mentioned earlier, our overall objective is to find an optimal
plan of the agent team, i.e., an infinite path in the GTS, such that
the LTL specification is fulfilled and the security requirements are
also satisfied. Due to the structural property of the Büchi acceptance
condition, without loss of generality, we restrict our solution accepting
runs to the following prefix–suffix structure, which is also referred to
as a plan:

𝜏𝑔 = 𝜋𝑔,0𝜋𝑔,1 …𝜋𝑔,𝑟[𝜋𝑔,𝑟+1 …𝜋𝑔,𝑛]𝜔 ∈ 𝑃𝑎𝑡ℎ𝜔(𝑇𝑔).

Intuitively, 𝜋𝑔,0𝜋𝑔,1 …𝜋𝑔,𝑟+1 is the prefix from the initial state to the
accepting state and the suffix 𝜋𝑔,𝑟+1 …𝜋𝑔,𝑛 back to itself is repeated
infinitely often by the multi-agent system. The total cost of a plan 𝜏𝑔 is
defined by:

𝐽 (𝜏𝑔) = 𝛼
𝑟
∑

𝑖=0
𝑤𝑔(𝜋𝑔,𝑖, 𝜋𝑔,𝑖+1) + (1 − 𝛼)

𝑛−1
∑

𝑖=𝑟+1
𝑤𝑔(𝜋𝑔,𝑖, 𝜋𝑔,𝑖+1), (2)

where 𝛼 ∈ [0, 1] is a parameter adjusting the weight of each part. We
consider the case of 𝛼 = 0.5 for the sake of simplicity and it can be
extended to the general situation.

Then the security-preserving planning problem that we solve in this
paper is formulated as follows.

Problem 3.1 (Optimal LTL Path Planning Problem with Security Con-
straints). Given a GTS 𝑇𝑔 = (𝛱𝑔 ,𝛱𝑔,0,→𝑔 , 𝑤𝑔 ,𝑔 , 𝐿𝑔) with an output
function 𝐻 ∶ 𝛱𝑔 → 𝑌 , LTL formula 𝜑 and a set of secret states 𝛱𝑠 ⊂ 𝛱 ,
determine a plan 𝜏𝑔 ∈ 𝑃𝑎𝑡ℎ𝜔(𝑇𝑔) starting from the possible initial states,
satisfying the following conditions:

(1) 𝑡𝑟𝑎𝑐𝑒(𝜏𝑔) ⊧ 𝜑;
(2) 𝜏𝑔 is secure in Type I and II;
(3) For any other plan �̇�𝑔 ∈ 𝑃𝑎𝑡ℎ𝜔(𝑇𝑔) satisfying the above two

requirements, we have 𝐽 (𝜏𝑔) ≤ 𝐽 (�̇�𝑔).

emark 4. According to the definition of security, if all agents never
ass through secret states during the whole period when executing 𝜏𝑔 ,

then this plan is trivially secure since we can choose 𝜏′′𝑔 = 𝜏′𝑔 = 𝜏𝑔 .
Therefore, in this case, we just need to solve the standard optimal
LTL path planning problem. However, in many applications, passing
through the secret states may be unavoidable as secret states may
represent some important ingredients in the task and we have to take
the security constraints into consideration.

4. Planning algorithm solution

In this section, we present the main planning algorithm that solves
the formulated problem. Our approach is based on a new transition
system called the multiple-labeling-GTS that captures the security con-
straints effectively. This structure is then composed with the Büchi
automaton for the LTL specification in order to form the solution space
containing all feasible secure plans, in which an optimal planning
problem is solved.

4.1. Multiple-labeling-GTS with security constraints

In Section 2, we construct GTS 𝑇𝑔 as the mobility model of entire
multi-agent system. Recall that a state 𝜋𝑔 ∈ 𝛱𝑔 contains 𝑘 states of 𝑘
agents, i.e. 𝜋𝑔 = (𝜋1,… , 𝜋𝑘). To avoid confusion, in the rest of the paper,
we use superscript to represent the ID of each agent and the subscript
to denote the state number.

First, we need to augment the GTS 𝑇𝑔 by adding a new label for
each agent component in order to track the information whether this
agent has visited secret states on the state in GTS 𝑇𝑔 . The labeling

construction is as follows.

5

Definition 4.1 (Labeling-GTS). Given GTS 𝑇𝑔 = (𝛱𝑔 ,𝛱𝑔,0,→𝑔 ,
𝑤𝑔 ,𝑔 , 𝐿𝑔) and a set of secret states 𝛱𝑠, its labeling-GTS �̃�𝑔 is defined
by:

�̃�𝑔 = (�̃�𝑔 , �̃�𝑔,0, →̃𝑔 , �̃�𝑔 ,𝑔 , �̃�𝑔),

where

• �̃�𝑔 = 𝛱𝑔 × {0, 1}𝑘;
• �̃�𝑔,0 = 𝛱𝑔,0 × {𝑎1} × ⋯ × {𝑎𝑘}, where for each 𝑖 ∈ {1,… , 𝑘}, if
𝜋𝑖
𝑔,0 ∈ 𝛱𝑠, then 𝑎𝑖 = 1, and 𝑎𝑖 = 0 otherwise;

• →̃𝑔 ⊆ �̃�𝑔 × �̃�𝑔 is the transition relation defined by: for any �̃�𝑔 =
(𝜋𝑔 , 𝑎1,… , 𝑎𝑘), �̃�′

𝑔 = (𝜋′
𝑔 , 𝑎

′1,… , 𝑎′𝑘) ∈ �̃�𝑔 , we have (�̃�𝑔 , �̃�′
𝑔) ∈ →̃𝑔

if the following holds:

– (𝜋𝑔 , 𝜋′
𝑔) ∈→𝑔 ,

– for each 𝑖 ∈ {1,… , 𝑘}, if 𝜋′𝑖
𝑔 ∈ 𝛱𝑠, then 𝑎′𝑖 = 1, and 𝑎′𝑖 = 𝑎𝑖

otherwise;

• �̃�𝑔 ∶ �̃�𝑔 × �̃�𝑔 → R+ is the cost function defined by: for any �̃�𝑔 =
(𝜋𝑔 , 𝑎1,… , 𝑎𝑘), �̃�′

𝑔 = (𝜋′
𝑔 , 𝑎

′1,… , 𝑎′𝑘) ∈ �̃�𝑔 , we have �̃�𝑔(�̃�𝑔 , �̃�′
𝑔) =

𝑤𝑔(𝜋𝑔 , 𝜋′
𝑔);

• �̃�𝑔 ∶ �̃�𝑔 → 2𝑔 is the labeling function defined by: for any
�̃�𝑔 = (𝜋𝑔 , 𝑎1,… , 𝑎𝑘) ∈ �̃�𝑔 , �̃�𝑔(�̃�𝑔) = 𝐿𝑔(𝜋𝑔).

Proposition 1. Given a labeling-GTS �̃�𝑔 and a finite path 𝜏𝑔 = 𝜏𝑔(0)𝜏𝑔(1)
… 𝜏𝑔(𝑛) ∈ �̃�𝜔

𝑔 , for any agent 𝑖 ∈ , 𝜏 𝑖𝑔 ⇝ 𝛱𝑠 if and only if the labeling of
𝜏 𝑖𝑔(𝑛) equals to 1.

Proof. (1) (Sufficiency) 𝑎𝑖𝑛 = 1 ⇒ Passing the secret state: From the
transition rule in Definition 4.1, we have if 𝑎𝑖𝑛 = 1, then there are two
situations. The first one is 𝜋𝑖

𝑔,𝑛 ∈ 𝛱𝑠 which means the agent 𝑖 is in the
secret state at time 𝑛. The second one is 𝑎𝑖𝑛−1 = 1 and 𝜋𝑖

𝑔,𝑛 ∉ 𝛱𝑠, which
indicates that the agent 𝑖 was in the secret state at time 𝑛−1 or 𝑎𝑖𝑛−2 = 1.
Recursively, we have there is at least one moment that the agent 𝑖 was
in the secret state. (2) (Necessity) Passing the secret state ⇒ 𝑎𝑖𝑛 = 1: We
assume the agent was in the secret state at time 𝑘, 𝑘 ∈ N, then 𝑎𝑖𝑘 = 1.
From the transition rule, we have 𝑎𝑖𝑘+1 = 1 regardless of whether it was
in the secret state or not at time 𝑘 + 1. It is easy to obtain 𝑎𝑖𝑛 = 1 after
iterating 𝑛 − 𝑘 times. □

If one agent passes the secret state, then for any plan 𝜏𝑔 , in order
to satisfy the security constraint, we need to have another two possible
strings 𝜏′𝑔 and 𝜏′′𝑔 as defined in security Types I and II, respectively, such
that 𝐻(𝜏𝑔) = 𝐻(𝜏′𝑔) = 𝐻(𝜏′′𝑔 ). Similarly, if 𝑘 agents visit secret states,
we need at most 2𝑘 possible strings with the same observation. This
essentially asks us to track, from the intruder’s point of view, 2𝑘 + 1
paths having the same observation. This idea is implemented by the
multiple-labeling-GTS defined as follows. For the sake of simplicity,
hereafter, we will omit the subscript in �̃�𝑔 and write it as �̃�, since state

ith upper tilde must be a global state.

efinition 4.2 (Multiple-labeling-GTS). Given a labeling-GTS �̃�𝑔 =
�̃�𝑔 , �̃�𝑔,0, →̃𝑔 , �̃�𝑔 ,𝑔 , �̃�𝑔), the corresponding multiple-labeling-GTS 𝑉
s a new wTS

= (𝑋,𝑋0,→𝑣, 𝑤𝑣,𝑔 , 𝐿𝑣),

here

• 𝑋 ⊆ �̃�𝑔 ×⋯× �̃�𝑔 is the set of states which is the product of 2𝑘+1
states in labeling-GTS �̃�𝑔 ;

• 𝑋0 = {(�̃�0, �̃�′
0,1,… , �̃�′

0,𝑘, �̃�
′′
0,1,… , �̃�′′

0,𝑘) ∈ �̃�𝑔,0 ×⋯ × �̃�𝑔,0 ∶ 𝐻(�̃�0) =
𝐻(�̃�′

0,1) = ⋯ = 𝐻(�̃�′
0,𝑘) = 𝐻(�̃�′′

0,1) = ⋯ = 𝐻(�̃�′′
0,𝑘)} is the set of

initial states;
• →𝑣⊆ 𝑋 × 𝑋 is the transition relation defined by: for any 𝑥 =
(�̃�, �̃�′

1,… , �̃�′
𝑘, �̃�

′′
1 ,… , �̃�′′

𝑘 ) ∈ 𝑋 and 𝑥· = (�̃�·, �̃�·′
1 ,… , �̃�·′

𝑘 , �̃�
·′′
1 ,… , �̃�·′′

𝑘 ) ∈
·
𝑋, we have (𝑥, 𝑥 ) ∈→𝑣 if the following hold:
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– (�̃�, �̃�·) ∈→𝑔 ,
– (�̃�′

1, �̃�
·′
1 ) ∈→𝑔 , … , (�̃�′

𝑘, �̃�
·′
𝑘 ) ∈→𝑔 ,

– (�̃�′′
1 , �̃�

·′′
1 ) ∈→𝑔 , … , (�̃�′′

𝑘 , �̃�
·′′
𝑘 ) ∈→𝑔 ,

– 𝐻(�̃�·) = 𝐻(�̃�·′
1 ) = ⋯ = 𝐻(�̃�·′

𝑘 ) = 𝐻(�̃�·′′
1 ) = ⋯ = 𝐻(�̃�·′′

𝑘 );

• 𝑤𝑣 ∶ 𝑋 × 𝑋 → R+ is the cost function defined by: for any 𝑥 =
(�̃�, �̃�′

1,… , �̃�′
𝑘, �̃�

′′
1 ,… , �̃�′′

𝑘 ) ∈ 𝑋 and 𝑥· = (�̃�·, �̃�·′
1 ,… , �̃�·′

𝑘 , �̃�
·′′
1 ,… , �̃�·′′

𝑘 ) ∈
𝑋, we have 𝑤𝑣(𝑥, 𝑥·) = �̃�𝑔(�̃�, �̃�·);

• 𝐿𝑣 ∶ 𝑋 → 2𝑔 is the labeling function defined by : for any
𝑥 = (�̃�, �̃�′

1,… , �̃�′
𝑘, �̃�

′′
2 ,… , �̃�′′

𝑘 ) ∈ 𝑋, we have 𝐿𝑣(𝑥) = �̃�𝑔(�̃�).

Note that each state �̃� = (𝜋1,… , 𝜋𝑘, 𝑎1,… , 𝑎𝑘) is a 2𝑘-tuple. Here,
e ignore the labels when using the output function, i.e., 𝐻(�̃�) =
((𝜋1,… , 𝜋𝑘)).
The multiple-labeling-GTS essentially contains all possible tuples of

n actual global path together with other 2𝑘 observation-equivalent
lobal paths: the first 𝑘 paths are used to fulfill Type I security and
ast 𝑘 paths are to fulfill the Type II security. This structure will serve
s the basis for synthesizing an optimal path.

.2. Planning algorithm

Recall that 𝐴𝜑 = (𝑄,𝑄0, 2
𝑔 , 𝛿, ) is the NBA associated with

he entire task specification 𝜑 of the multi-agent system. In order to
btain the global path satisfying the LTL task formula 𝜑, we propose
way to ‘‘encode’’ automaton 𝐴𝜑 accepting 𝜑 into the solution space
ultiple-labeling-GTS 𝑉 , which is detail as follows.

efinition 4.3 (Product System). Given multiple-labeling-GTS 𝑉 =
𝑋,𝑋0,→𝑣, 𝑤𝑣,𝑔 , 𝐿𝑣), and NBA 𝐴𝜑 = (𝑄,𝑄0, 2

𝑔 , 𝛿, ), the product
ystem is a new wTS:

⊗ = (𝛱⊗,𝛱⊗,0,→⊗, 𝑤⊗),

here:

• 𝛱⊗ ⊆ 𝑋 ×𝑄 is the set of states;
• 𝛱⊗,0 = 𝑋0 ×𝑄0 is the set of initial states;
• →⊗⊆ 𝛱⊗ × 𝛱⊗ is the transition relation defined by: for any
𝜋⊗ = (𝑥, 𝑞), 𝜋·

⊗ = (𝑥·, 𝑞·) ∈ 𝛱⊗, we have (𝜋⊗, 𝜋·
⊗) ∈→⊗ if the

following two conditions hold:

– (𝑥, 𝑥·) ∈→𝑣,
– 𝑞· ∈ 𝛿(𝑞, 𝐿𝑣(𝑥·));

• 𝑤⊗ ∶ 𝛱⊗ × 𝛱⊗ → R+ is the cost function defined by: for any
𝜋⊗ = (𝑥, 𝑞), 𝜋·

⊗ = (𝑥·, 𝑞·) ∈ 𝛱⊗, we have 𝑤⊗(𝜋⊗, 𝜋·
⊗) = 𝑤𝑣(𝑥, 𝑥·).

The product system further restricts the dynamic of agents such
that each movement in 𝑇⊗ should not violate the task specification 𝜑.
The satisfaction of the task requires agents to reach accepting states
in the product system infinitely often, i.e. the accepting state should
appear in the suffix path that forms a cycle such that agents could reach
repeatedly. Let 𝐶𝑦𝑐𝑙𝑒(𝑇⊗) ⊆ 𝛱⊗ be the set of all states in some cycles in
he product system 𝑇⊗. We denote by set 𝐺𝑜𝑎𝑙(𝑇⊗) all accepting states

in 𝑇⊗ and to be specific, the states in 𝐺𝑜𝑎𝑙(𝑇⊗) are in 𝐶𝑦𝑐𝑙𝑒(𝑇⊗) and
their last components are in  , i.e.

𝐺𝑜𝑎𝑙(𝑇⊗) = {(𝑥, 𝑞) ∈ 𝛱⊗ ∶ (𝑥, 𝑞) ∈ 𝐶𝑦𝑐𝑙𝑒(𝑇⊗) ∧ 𝑞 ∈ },

which will be the first state in suffix and the last state in prefix when
calculating the global plan.

Note that visiting states in 𝐺𝑜𝑎𝑙(𝑇⊗) only ensures the LTL speci-
fication; the security requirements are not considered. Therefore, we
further define 𝑆(𝑇⊗) ⊆ 𝐺𝑜𝑎𝑙(𝑇⊗) as the set of secure accepting states in
𝑇⊗ such that the security requirements are satisfied, i.e.

𝑆(𝑇⊗) =

⎧

⎪

⎨

⎪

(𝑥, 𝑞) ∈ 𝐺𝑜𝑎𝑙(𝑇⊗) ∶
(∀𝑖 ∈ {1,… , 𝑘} ∶ if 𝑎𝑖 = 1)

[

s.t. ∃𝑢, 𝑣 ∈ {1,… , 𝑘}, 𝑗 ≠ 𝑖 ∶
𝑎′𝑖 = 0 and 𝑎′′𝑗 = 1

]

⎫

⎪

⎬

⎪

, (3)
⎩
𝑢 𝑣

⎭

6

where 𝑥 = ((𝜋𝑔 , 𝑎1,… , 𝑎𝑘), (𝜋′
𝑔,1, 𝑎

′1
1 ,… , 𝑎′𝑘1 ),… , (𝜋′

𝑔,𝑘, 𝑎
′1
𝑘 , … , 𝑎′𝑘𝑘 ),

(𝜋′′
𝑔,1, 𝑎

′′1
1 ,… , 𝑎′′𝑘1 ),… , (𝜋′′

𝑔,𝑘, 𝑎
′′1
𝑘 ,… , 𝑎′′𝑘𝑘 )).

The construction of multiple-labeling-GTS and the set 𝑆(𝑇⊗) ensures
both security types. In words, for any secure global path, if one agent
went through a secret state, there must exist an observation-equivalent
global path with this agent not passing by the secret state and another
observation-equivalent global path with another agent passing by the
secret state in the period. Such a multiple-path composition from the
initial state to the secure accepting state in 𝑆(𝑇⊗) should exist in the
product of multiple-labeling-GTS and automatons which ensures the
global path satisfies the task specification.

Recall that, our problem formulation requires that both types of
security should be satisfied. In case we are only interested in a single
type of security, we can simple restrict the condition in Eq. (3) by

• 𝑎′𝑖𝑢 = 0 for Type I security; and
• ∃𝑗 ≠ 𝑖 ∶ 𝑎′′𝑗𝑣 = 1 for Type II security.

Furthermore, for each state 𝜋⊗ = ((𝜋𝑔 , 𝑎1,… , 𝑎𝑘), (𝜋′
𝑔,1, 𝑎

′1
1 , … , 𝑎′𝑘1 ),

… , (𝜋′
𝑔,𝑘, 𝑎

′1
𝑘 ,… , 𝑎′𝑘𝑘 ), (𝜋′′

𝑔,1, 𝑎
′′1
1 ,… , 𝑎′′𝑘1 ),… , (𝜋′′

𝑔,𝑘, 𝑎′′1𝑘 ,… , 𝑎′′𝑘𝑘 ), 𝑞) ∈ 𝛱⊗,
we denote by 𝛱𝑔[𝜋⊗] = 𝜋𝑔 the first global state of 𝜋⊗, i.e., the
projection onto GTS. We also write 𝛱𝑔[𝜋⊗0𝜋⊗1 …𝜋⊗𝑛] = 𝜋𝑔,0𝜋𝑔,1 …𝜋𝑔,𝑛.
Also, we denote by 𝑅(𝛱⊗0) the set of all possible states reachable from
𝛱⊗0 in 𝑇⊗.

Based on the prefix–suffix structure introduced in Section 3, we
need to find an optimal path in the form of 𝛱⊗0 → (𝑆(𝑇⊗) → 𝑆(𝑇⊗))𝜔

in 𝑇⊗. Note that the cardinality of sets 𝛱⊗0 and 𝑆(𝑇⊗) may be both
greater than one. Therefore, we need to compare costs of all possible
paths and choose an optimal one.

The overall solution is formalized by Algorithm 1. Specifically, line
1 constructs the GTS 𝑇𝑔 with wTS 𝑇𝑖, 𝑖 ∈ {1,… , 𝑘} and lines 2–
3 obtain the labeling-GTS �̃�𝑔 and multiple-labeling-GTS 𝑉 with the
security information, respectively. Line 4 converts the task specification
to the corresponding NBA 𝐴𝜑. Line 5 constructs the product system
of 𝑉 and 𝐴𝜑. Line 6 aims to determine whether there exists a path
satisfying the task specification as well as the security constraints. If
agents cannot reach any states in 𝑆(𝑇⊗) from 𝛱⊗0, then there is no
feasible path and ‘‘no feasible plan" will be returned. If there exists
at least one path, we consider all possible combinations from initial
states in 𝛱⊗0 to secure accepting states in 𝑆(𝑇⊗) in lines 9 and 10.
In lines 11 and 12, we calculate the shortest prefix and suffix paths for
all combinations by utilizing the shortest path algorithm, e.g. Dijkstra’s
algorithm (LaValle, 2006). In line 13, among all feasible combinations,
we choose the optimal pair (𝜋∗

⊗0, 𝜋
∗
⊗𝐹 ) with the least cost according

to Eq. (2) and return the optimal plan 𝜏𝑔 which is the projection onto
GTS 𝑇𝑔 by 𝛱𝑔[] in line 14.

5. Correctness and complexity

In this section, we prove the correctness of the solution and discuss
the complexity of Algorithm 1.

5.1. Correctness of the solution

Theorem 1. For GTS 𝑇𝑔 = (𝛱𝑔 ,𝛱𝑔,0,→𝑔 , 𝑤𝑔 ,𝑔 , 𝐿𝑔) with output
function 𝐻 ∶ 𝛱𝑔 → 𝑌 , LTL formula 𝜑 and a set of secret states 𝛱𝑠,
Algorithm 1 correctly solves the planning problem formulated in Problem 1.

Proof. Hereafter, we assume that 𝜏𝑔 is the resulting plan returned by
Algorithm 1 and the optimal plan is 𝜏𝑔 = 𝛱𝑔[𝜏𝑝𝑟𝑒(𝜏𝑠𝑢𝑓 )𝜔], where

𝜏𝑝𝑟𝑒 = ((�̃�0, �̃�′
0,1,… , �̃�′

0,𝑘, �̃�
′′
0,1,… , �̃�′′

0,𝑘), 𝑞0)…
((�̃�𝑛, �̃�′

𝑛,1,… , �̃�′
𝑛,𝑘, �̃�

′′
𝑛,1,… , �̃�′′

𝑛,𝑘), 𝑞𝑛)
𝜏𝑠𝑢𝑓 = ((�̃�𝑛+1, �̃�′

𝑛+1,1,… , �̃�′
𝑛+1,𝑘, �̃�

′′
𝑛+1,1,… , �̃�′′

𝑛+1,𝑘), 𝑞𝑛+1)…
((�̃�𝑛+𝑚, �̃�′

𝑛+𝑚,1,… , �̃�′
𝑛+𝑚,𝑘, �̃�

′′
𝑛+𝑚,1,… , �̃�′′

𝑛+𝑚,𝑘), 𝑞𝑛+𝑚),

and 𝑞 ∈  .
𝑛+1
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Algorithm 1: Optimal LTL plan.
Input: LTL formula 𝜑, wTS 𝑇𝑖, 𝑖 ∈ {1,… , 𝑘} with output

mapping 𝐻 and the set of secret states 𝛱𝑠.
Output: Optimal global plan 𝜏𝑔 .

1 Construct the GTS
𝑇𝑔 = 𝑇1 ×… × 𝑇𝑘 = (𝛱𝑔 ,𝛱𝑔,0,→𝑔 , 𝑤𝑔 ,𝑔 , 𝐿𝑔).

2 Obtain �̃�𝑔 by labeling 𝑇𝑔 , where
�̃�𝑔 = (�̃�𝑔 , �̃�𝑔,0, →̃𝑔 , �̃�𝑔 ,𝑔 , �̃�𝑔).

3 Construct the multiple-labeling-GTS
𝑉 = (𝑋,𝑋0,→𝑣, 𝑤𝑣,𝑔 , 𝐿𝑣).

4 Convert 𝜑 to the corresponding NBA 𝐴𝜑.
5 Construct the product system 𝑇⊗ of 𝑉 and 𝐴𝜑, where

𝑇⊗ = (𝛱⊗,𝛱⊗0,→⊗, 𝑤⊗).
6 if R(𝛱⊗0) ∩ S(𝑇⊗) = ∅ then
7 return ‘‘no feasible plan".
8 else
9 for 𝜋⊗0 ∈ 𝛱⊗0 do

10 for 𝜋⊗𝐹 ∈ 𝑆(𝑇⊗) do
11 𝜏𝑝𝑟𝑒(𝜋⊗0, 𝜋⊗𝐹 ) = 𝑠ℎ𝑜𝑟𝑡𝑝𝑎𝑡ℎ(𝜋⊗0, 𝜋⊗𝐹 ).
12 𝜏𝑠𝑢𝑓 (𝜋⊗𝐹 , 𝜋⊗𝐹 ) = 𝑠ℎ𝑜𝑟𝑡𝑝𝑎𝑡ℎ(𝜋⊗𝐹 , 𝜋⊗𝐹 ).

13 (𝜋∗
⊗0, 𝜋

∗
⊗𝐹 ) = argmin(𝜋⊗0 ,𝜋⊗𝐹 )

𝐽 (𝛱𝑔[𝜏𝑝𝑟𝑒(𝜋⊗0, 𝜋⊗𝐹 )(𝜏𝑠𝑢𝑓 (𝜋⊗𝐹 , 𝜋⊗𝐹 ))𝜔]).
14 return optimal plan

𝜏𝑔 = 𝛱𝑔[𝜏𝑝𝑟𝑒(𝜋∗
⊗0, 𝜋

∗
⊗𝐹 )(𝜏𝑠𝑢𝑓 (𝜋

∗
⊗𝐹 , 𝜋

∗
⊗𝐹 ))

𝜔].

We first prove the resulting global path satisfies the task specifica-
ion, i.e., 𝑡𝑟𝑎𝑐𝑒(𝜏𝑔) ⊧ 𝜑. It is easy to obtain that 𝜏𝑔 = 𝜋𝑔,0 …𝜋𝑔,𝑛(𝜋𝑔,𝑛+1
…𝜋𝑔,𝑛+𝑚)𝜔. From the transition rule of the product system 𝑇⊗, we have
that 𝜇 = 𝑞0 … 𝑞𝑛(𝑞𝑛+1 … 𝑞𝑛+𝑚)𝜔 is an infinite run induced by an infinite
word 𝑡𝑟𝑎𝑐𝑒(𝜏𝑔) = 𝐿𝑔(𝜋𝑔,0)…𝐿𝑔(𝜋𝑔,𝑛)(𝐿𝑔(𝜋𝑔,𝑛+1)…𝐿𝑔(𝜋𝑔,𝑛+𝑚))𝜔. Since
𝑞𝑛+1 ∈  , we have that 𝐼𝑛𝑓 (𝜇)∩ ≠ ∅, i.e., 𝑡𝑟𝑎𝑐𝑒(𝜏𝑔) ∈ 𝐴𝜑

= 𝑤𝑜𝑟𝑑𝑠(𝜑).
Therefore, 𝑡𝑟𝑎𝑐𝑒(𝜏𝑔) ⊧ 𝜑.

Second, we show that the global path is secure, i.e., 𝜏𝑔 is secure. If
there is no agent visited secret states, then 𝜏𝑔 is secure trivially. Then
we consider the case where at least one agent has visited the secret
state. We find the resulting path from the initial state 𝜋⊗0 ∈ 𝛱⊗0 to
𝜋⊗𝐹 ∈ 𝑆(𝑇⊗). From the definition of 𝑆(𝑇⊗) and Theorem 1, we have
that if one agent in 𝜏𝑝𝑟𝑒,𝑔 has visited secret states, then there must exist
𝑢, 𝑣 ∈ {1,… , 𝑘} such that this agent did not visit secret states in 𝜏′𝑝𝑟𝑒,𝑔,𝑢
and there exists another agent visited secret states in 𝜏′′𝑝𝑟𝑒,𝑔,𝑣, where
𝜏𝑝𝑟𝑒,𝑔 = 𝜋𝑔,0 …𝜋𝑔,𝑛, 𝜏′𝑝𝑟𝑒,𝑔,𝑢 = 𝜋′

𝑔,0,𝑢 …𝜋′
𝑔,𝑛,𝑢 and 𝜏′′𝑝𝑟𝑒,𝑔,𝑣 = 𝜋′′

𝑔,0,𝑣 …𝜋′′
𝑔,𝑛,𝑣;

these paths satisfy the second point in Definition of type I and type II
security. Furthermore, we have that the composition of 𝜏𝑝𝑟𝑒,𝑔 , 𝜏′𝑝𝑟𝑒,𝑔,𝑢 and
𝜏′′𝑝𝑟𝑒,𝑔,𝑣 is a part of path in 𝑉 and from the transition rule of 𝑉 , it is easy
to obtain 𝐻(𝜏𝑝𝑟𝑒,𝑔) = 𝐻(𝜏′𝑝𝑟𝑒,𝑔,𝑢) = 𝐻(𝜏′′𝑝𝑟𝑒,𝑔,𝑣), which satisfies the first
point in both type I and type II security. The case of multiple robots
visiting secret states can also be proved in the same way. Therefore,
the infinite path 𝜏𝑔 is secure since any of its finite prefix 𝜏𝑝𝑟𝑒,𝑔 is secure.

Third, we show that the global path is optimal, i.e., for any secure
path �̇�𝑔 satisfying the task specification 𝜑, we have 𝐽 (�̇�𝑔) ≥ 𝐽 (𝜏𝑔).
Here, we prove it by contradiction. Suppose that �̇�𝑔 ∈ 𝑃𝑎𝑡ℎ𝜔(𝑇𝑔) is a
secure path satisfying the task specification and 𝐽 (�̇�𝑔) < 𝐽 (𝜏𝑔). Since
�̇�𝑔 is secure, its prefix �̇�𝑝𝑟𝑒,𝑔 is secure and there exist other two paths
�̇�′𝑝𝑟𝑒,𝑔,𝑢, �̇�

′′
𝑝𝑟𝑒,𝑔,𝑣 ∈ 𝑃𝑎𝑡ℎ𝜔(𝑇𝑔), 𝑢, 𝑣 ∈ {1,… , 𝑘} such that 𝐻(�̇�𝑝𝑟𝑒,𝑔) =

𝐻(�̇�′𝑝𝑟𝑒,𝑔,𝑢) = 𝐻(�̇�′′𝑝𝑟𝑒,𝑔,𝑣). Then according to Definition 4.2, we have
that there exists a path 𝜏𝑉 ∈ 𝑃𝑎𝑡ℎ𝜔(𝑉 ) containing labeling �̇�𝑔 , �̇�′𝑝𝑟𝑒,𝑔,𝑢
and �̇�′′𝑝𝑟𝑒,𝑔,𝑣. Furthermore, since it satisfies the task, there exists a path
𝜏⊗ ∈ 𝑃𝑎𝑡ℎ𝜔(𝑇⊗) which is the product of 𝑉 and 𝐴𝜑. Without loss of
generality, we write the �̇�⊗ = �̇�𝑝𝑟𝑒(�̇�𝑠𝑢𝑓 )𝜔 as the following structure:

�̇�𝑝𝑟𝑒 = ((�̃�0,… , �̃�′
0,𝑢,… , �̃�′′

0,𝑣,…), 𝑞0)…
((�̃�𝑛,… , �̃�′

𝑛,𝑢,… , �̃�′′
𝑛,𝑣,…), 𝑞𝑛)

�̇�𝑠𝑢𝑓 = ((�̃�𝑛+1,… , �̃�′
𝑛+1,𝑢,… , �̃�′′

𝑛+1,𝑣,…), 𝑞𝑛+1)…
′ ′′
((�̃�𝑛+𝑚,… , �̃�𝑛+𝑚,𝑢,… , �̃�𝑛+𝑚,𝑣,…), 𝑞𝑛+𝑚).
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We have that ((�̃�0,… , �̃�′
0,𝑢,… , �̃�′′

0,𝑣,…), 𝑞0) ∈ 𝛱⊗0 and �̇�⊗𝐹 =
((�̃�𝑛+1,… , �̃�′

𝑛+1,𝑢,… , �̃�′′
𝑛+1,𝑣,…), 𝑞𝑛+1) ∈ 𝑅(𝛱⊗0)∩𝑆(𝑇⊗). Then Algorithm

1 returns �̇�𝑔 = 𝛱𝑔[�̇�𝑝𝑟𝑒(�̇�𝑠𝑢𝑓 )𝜔] with the least cost instead of 𝜏𝑔 , which
is a contradiction. Therefore, 𝜏𝑔 is the optimal path with the least cost.

The above three aspects show that Algorithm 1 is sound that the
solution is correct if a global path is returned by the algorithm. Finally
we show that Algorithm 1 is also complete, i.e., if ‘‘no feasible plan’’
is returned by Algorithm 1, then there is no solution to Problem 3.1.
The proof is similar with the proof of optimal property. We assume that
there exists a global secure path 𝜏𝑔 ∈ 𝑃𝑎𝑡ℎ𝜔(𝑇𝑔) such that 𝑡𝑟𝑎𝑐𝑒(𝜏𝑔) ⊧ 𝜑
and 𝜏𝑔 is secure. The same as the above proof for optimality, there exists
a path 𝜏⊗ ∈ 𝑃𝑎𝑡ℎ𝑤(𝑇⊗) and 𝑅(𝜋⊗0) ∩ 𝑆(𝑇⊗) ≠ ∅. Therefore, it will not
return ‘‘no feasible plan’’ in Algorithm 1.

In conclusion, Algorithm 1 is sound and complete in solving the
optimal planning problem with security constraints defined in Prob-
lem 3.1. □

5.2. Complexity analysis

We conclude this section by analyzing the computational complex-
ity of Algorithm 1. First, we note that the global transition system
𝑇𝑔 contains |𝛱𝑔| ≤ |𝛱|

𝑘 states, where |𝛱| = max𝑖∈{1,…,𝑘} |𝛱𝑖| is the
largest number of states in each wTS 𝑇𝑖, 𝑖 ∈ {1,… , 𝑘} and there are
at most |�̃�𝑔| = 2𝑘|𝛱𝑔| states after adding labels in labeling-GTS �̃�𝑔 .
From Definition 4.2, we have that the multiple-labeling-GTS includes
at most |�̃�𝑔|

2𝑘+1 states. Since there are |𝑄| states in the corresponding
Büchi automaton converted by 𝜑, the product system 𝑇⊗ contains at
most |𝛱⊗| = |�̃�𝑔|

2𝑘+1
|𝑄| states which increases exponentially with the

number of agents. Algorithm 1 involves solving a shortest path search
problem over a graph with at most (2|𝛱|)2𝑘2+2𝑘|𝑄| states.

Now, we compare the complexity of Algorithm 1 with existing LTL
task planning algorithm without security constraints. Specifically, let us
consider the standard LTL multi-agent planning algorithm in Guo and
Dimarogonas (2015). To generate optimal plannings for each agent,
we need to solve a shortest path search problem over a structure with
|𝛱|

𝑘
|𝑄| states. The complexity of our algorithm is higher than that

of Guo and Dimarogonas (2015) because the order of the number
of states increases from 𝑘 to 𝑘2. However, as we will see in the
next section, the algorithm in Guo and Dimarogonas (2015) does not
necessarily preserve security. Our algorithm spends higher complexity
compared with the existing one mainly because we further take the
issue of security into account.

6. Case studies

In this section, three case studies are presented to illustrate the
proposed security-preserving path planning algorithms. In particular,
we have implemented the proposed algorithms and set up the physical
experiment environment. All algorithms are implemented in Python
2.7. The first two case studies are both extended based on the moti-
vating example in Section 1.1 and correspond to security type I and
type II respectively. The experiment is presented for the combination
of two types security constraints.

Codes and experiment video are available at https://github.com/
Xinyi-Yu/Multiagent-LTL-Opacity.

6.1. Case Study 1: Type I security

We use this case study to illustrate the Type I security, i.e., the
intruder should not be able to determine for sure that some specific
robots have visited secret states.

System Model: Suppose that there are two manufacturing robots 𝑅1
and 𝑅2 working in a 6 × 6 workspace as shown in Fig. 2. Two robots
𝑅1 and 𝑅2 start from their own sets of initial states (the red area), in
lower-left corner and lower-right corner respectively. At each instant,

each robot can move left/right/up/down to its adjacent grid or stay

https://github.com/Xinyi-Yu/Multiagent-LTL-Opacity
https://github.com/Xinyi-Yu/Multiagent-LTL-Opacity
https://github.com/Xinyi-Yu/Multiagent-LTL-Opacity
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Fig. 2. Simulation results for the case study described in Section 6.1. Left: The actual
paths executed by each robot to fulfill the LTL specification and security constraint.
Right: Possible paths having the same observations as the actual ones from the
intruder’s point of view. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

at its current grid. The cost for moving vertically one step up/down
is fixed as one unit. However, the cost for moving horizontally one
step left/right is 0.2𝑖 if the robot is in the 𝑖th row, where 𝑖 = 1,… , 6.
Furthermore, there is no cost for staying at where it is without any
movement.

The working space has the following regions with special properties
of interest:

• an assembly workshop (blue region) where the robots assemble
products; we use atomic proposition 𝑎𝑖 to denote that robot 𝑅𝑖 is
in the assembly workshop.

• a warehouse (yellow region) where some components are stored;
we use 𝑤𝑖 to denote that robot 𝑅𝑖 is in the warehouse.

• a command center (cyan region) where the robots can get
blueprints for using some special machines in the assembly work-
shop; we use 𝑐𝑖 to denote that robot 𝑅𝑖 is in the command
center.

• obstacles (gray region) where the robots cannot visit; we use 𝑜𝑏𝑠
to denote that some robot reaches the obstacle.

Planning Objectives: The main task of robots 𝑅1 and 𝑅2 is to
deliver components between the warehouse and assembly workshop
infinitely often while avoiding all obstacles. Furthermore, one robot
needs to go to the command center to obtain the blueprint of the
product. Formally, the overall task specification can be expressed by
the following LTL formula

𝜑 = (◊𝑐1 ∨◊𝑐2) ∧□◊𝑤1 ∧□◊𝑎1 ∧□◊𝑤2 ∧□◊𝑎2 ∧□¬𝑜𝑏𝑠.

Security Constraints: We assume that there is an intruder that can
get the column information of each specific robot at each instant, but
does not know its row information. That is, if 𝑅1 and 𝑅2 are at states
(𝑥1, 𝑦1) and (𝑥2, 𝑦2), respectively, then the intruder observes (𝑥1, 𝑥2).

ere we consider the following security-preserving problem. The multi-
obot system does not want the intruder to know for sure a specific
obot is carrying the blueprint. Otherwise, e.g., the intruder may hack
he robot to disrupt the key operation associated with the blueprint.

Solution: The above setting can be modeled by Problem 3.1. Specif-
cally, the system model can be constructed in the form of GTS 𝑇𝑔 and
he output function only reads the column information of each robot
s described above. The secret state is the command center (𝑥5, 𝑦3)
nd the security constraint actually falls into the category of Type I
ecurity. Therefore the proposed planning Algorithm 1 in Section 4
an be implemented in this case and the synthesized plan is shown in
ig. 2. Specifically, the paths in the left picture of Fig. 2 are the actual
aths executed by each robot that satisfy both the task specification and
he security constraint. The paths in the right picture of Fig. 2 are not
he actual paths executed by the robots. Instead, they represent those

ossible paths having the same observation as the left ones from the
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Fig. 3. Simulation results for the case study described in Section 6.2. Left: The actual
paths executed by each robot to fulfill the LTL specification and security constraint.
Right: Possible paths having the same observations as the actual ones from the
intruder’s point of view. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

point of intruder’s view but do not visit the secret state so that they
explain why the left ones are secure.

Now, let us compare the synthesized plans with the solution syn-
thesized by the standard algorithm for LTL multi-agent task planning
without security constraints. Specifically, we consider the algorithm
in Guo and Dimarogonas (2015) and the solution generated is exactly
the same as ours. However, this similarity is just a coincidence and we
will show in the next two examples that the solution provided by Guo
and Dimarogonas (2015) may not be secure.

6.2. Case Study 2: Type II security

We use this case study to illustrate the Type II security, i.e., the
intruder should not be able to identify that robot 𝑖 is the only possible
robot that has visited the secret states. The system model is the same
as that in Case Study 1 described the last subsection. However, here
we have four robots 𝑅1, 𝑅2, 𝑅3 and 𝑅4 in the workspace starting from
their own initial states (the red area), in lower-left corner (for 𝑅1),
lower-right corner (for 𝑅2) and upper-left corner (for 𝑅3 and 𝑅4),
respectively.

Planning Objectives: The main task of robots 𝑅1 and 𝑅2 is the same
as Case Study 1, i.e., to deliver components between the warehouse
and assembly workshop infinitely often while avoiding all obstacles.
In addition, robot 𝑅3 is responsible for assembling components in
the assembly workshop and robot 𝑅4 is responsible for managing the
warehouse. Furthermore, robot 𝑅2 needs to get the blueprint of the
product. Therefore, the overall task specification becomes

𝜑 = ◊𝑐2 ∧□◊𝑤1 ∧□◊𝑎1 ∧□◊𝑤2 ∧□◊𝑎2 ∧□◊𝑎3 ∧□◊𝑤4 ∧□¬𝑜𝑏𝑠.

Security Constraints: We consider an intruder with the observation
function as that in Case Study 1 and the system does not want the
intruder to suspect that it is robot 𝑅2 the only candidate that has possi-
bly been to the command center. Otherwise, the intruder may focus its
attention on tracking the behavior of 𝑅2 in subsequent missions, which
may threaten the security of the blueprint information.

Solution: The same as Case Study 1, the above setting can be
modeled by Problem 3.1. Specifically, the secret state is also command
center (𝑥5, 𝑦3) with label 𝑐𝑖 but this time, the security constraint fits
Type II security. Algorithm 1 is implemented in the simulation and the
results are shown in Fig. 3. It is worth mentioning that, in order to
ensure security, robot 𝑅1 takes a little detour depicted by the thin dash
dot line in the left of Fig. 3 so that the intruder may think that 𝑅1
may also possibly take the path shown in the right of Fig. 3 that passes
through the command center. Therefore, the intruder cannot suspect
𝑅2 as the only robot carrying the blueprint.

Still, we compare the synthesized plans with solutions obtained by
the standard LTL multi-agent task planning algorithm without security
constraint (Guo & Dimarogonas, 2015). For this example, the optimal
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Fig. 4. Experiments results for Case Study 3. Four pictures show the positions of two
robots at different times. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

plans for robots 𝑅2, 𝑅3 and 𝑅4 are the same as our synthesized plans.
owever, the plan for robot 𝑅1 is different. Specifically, it will take the

ame path as Case Study 1, i.e., from state (𝑥3, 𝑦2), it will move upward
directly instead of detouring to (𝑥5, 𝑦2). However, this plan generated
by Guo and Dimarogonas (2015) is not secure in Type II because only
𝑅2 has been to column 5 and the intruder will only suspect 𝑅2 although
it cannot make sure 𝑅2 has been to secret states. In contrast, our
solution shown in Fig. 3 ensures both the correctness of the task and
the security of the system.

6.3. Case Study 3: Type I and II security

The above two case studies illustrate Type I and II security respec-
tively and which security definition to use is problem-dependent. In
some cases, Type I and II security should be satisfied simultaneously;
we take the following experiment as an example.

System Model: Let us consider a team of two robots 𝑅1 and 𝑅2
working in a workspace shown in Fig. 4, which is divided into four
regions of interest depicted by four different colors. Each region is
further divided into several sub-regions as shown in the figure. Robots
𝑅1 and 𝑅2 start from sub-region 𝐴 and 𝐸 respectively. At each instant,
each robot can move to one of its adjacent sub-regions without crossing
obstacles, which are black parts in the figure, or to stay in its current
sub-region. Furthermore, when the robot moving from one sub-region
to another, one unit of cost incurs if these two sub-regions belong to
the same region and two units of cost incur when the two sub-regions
belong to different regions. There is no cost if the robot chooses to stay
in its current sub-region.

Planning Objectives: We use atomic proposition 𝜇𝑖 to denote that
robot 𝑅𝑖 is in the sub-region 𝜇, where 𝜇 ∈ {𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹 ,𝐺,𝐻}.
The objective of robot 𝑅1 is to first visit sub-region 𝐵 before visiting
𝐶 infinitely often. The objective of robot 𝑅2 is to visit sub-region 𝐷
infinitely often. Therefore, the task formula is

𝜑 = (¬𝐶1𝑈𝐵1) ∧□◊𝐶1 ∧□◊𝐷2.

Observation Model and Security Constraint: We assume that
whenever each robot finishes its movement to a new sub-region, it
needs to communicate to the central control station to report its current
status. The communication services are provided by four base stations;
each of them covers all sub-regions in one of the four regions. We
assume that there is an intruder that knows whether a robot is using a
specific base station, but does not know the specific sub-region within

the service of the base station. In other words, whenever the robot
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makes a movement, the intruder knows which region (color) it belongs
to but cannot specify the precise sub-region. We assume that sub-region
𝐵 is a secret state for which the system does not want the intruder
to know either some robots have been to secret state or which one has
been to the secret sub-region 𝐵. This may because, for instance, having
been to the secret state means subsequent work may involve secret
things while locking in the only suspect target will expose this target
to danger.

Generated Plan: The above setting can also be modeled by Prob-
lem 3.1 which is the same as Case Study 1 and 2. The output function
maps each sub-region to the color of the region it belongs to. The secret
state is sub-region 𝐵 and the above security constraints fit Type I and
II security. Therefore the proposed planning Algorithm 1 in Section 4
can be implemented in this case and the results are shown in Fig. 4.
Specifically, the robot team takes the plan

𝑃 = (𝐴,𝐸) → (𝐴, 𝐹 ) → (𝐵,𝐺) → [(𝐶,𝐷)]𝜔.

This plan is not the least costly without security consideration. How-
ever, it is the optimal one among all secure plans. Specifically, for this
plan, we can find another plan 𝑃 ′ = 𝑃 ′′ = (𝐴,𝐸) → (𝐹 , 𝐹 ) → (𝐺,𝐵) →
[(𝐷,𝐶)]𝜔, such that the privacy constraints will be satisfied. Therefore,
from the finite observation (𝗀𝗋𝖾𝖾𝗇, 𝗉𝗎𝗋𝗉𝗅𝖾) → (𝗀𝗋𝖾𝖾𝗇, 𝗀𝗋𝖾𝖾𝗇) → (𝗋𝖾𝖽, 𝗋𝖾𝖽) →
(𝖻𝗅𝗎𝖾, 𝖻𝗅𝗎𝖾), the intruder can neither infer whether the robot 𝑅1 has been
to the secret sub-region nor suspect robot 𝑅1 only.

For the purpose of comparison, we still apply the standard LTL
planning algorithm in Guo and Dimarogonas (2015) and obtain optimal
plan (𝐴,𝐸) → (𝐵,𝐻) → [(𝐶,𝐷)]𝜔. Note that the cost of this plan is
seven, which is smaller than that of our synthesized plan. However,
similar to the previous case study, we see that this plan is still not secure
because only 𝑅1 has been to the red region and the intruder will only
suspect it, which violates Type II security. Our algorithm synthesizes a
plan with a higher cost but ensures security of the system.

7. Conclusion

In this paper, we solved an optimal security-preserving temporal
logic task planning problem for multi-agent systems. Two types of
conditions were proposed to capture different security requirements.
An effective algorithm was proposed based on the product of multiple-
labeling-GTS and the Büchi automaton to ensure the proposed security
conditions. Simulation results as well as real-world experiments were
provided to illustrate the proposed results. The complexity of proposed
algorithm is polynomial in the size of the GTS but is exponential
in the number of robots. In the future, we would like to explore
recent developed scalable task planning methods, such as sampling-
based approach (Kantaros & Zavlanos, 2018, 2020) and learning-based
approach (Cai et al., 2020; Hasanbeig et al., 2019), to further miti-
gate the computational complexity of the security-preserving planning
algorithm.
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